
AFIT/GEIENG/93M-01 D IAgu ELECTE

AD-A262 490 1 APR5 1993.*

SPEECH RECOGNITION USING VISIBLE AND INFRARED DETECTORS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirement for the Degree of

Master of Science in Electrical Engineering

Patrick T. Marshall

GS-12, USAF

93-06895
September 192 I

Approved for public release; distribution unlimited.

8 4 02 054 Reproduced From
Best Available Copy

0? 0 QO0fOOC6 /7/

Acknowledgments

Many thanks to my fellow Hanger Rats who I work with and who helped me make

this research effort become a success. I want to thank my supervisor, Mr. Daniel Murray,

who supported me !hroughout this effort. I want to also thank my thesis advisor, Dr.

Matthew Kabrisky, who not only provided the technical expertise to keep my research

going in the right direction but who also allowed flexibility to explore my ideas. Finally, I

would like to give a special thanks to my wife Janet for her support and encouragement

during the lest six years.

Patrick T. Marshall

Accesion For

NTIS CRA&
1

CTIC TAB 8
Urianou:nced 0

By

Distribution I

Availability Codes

SAvdil d'•d / r,

ist Special

fi

Table of Contents

Page

Acknowledgments.. 11

List of Figures.. 4........................... v

List of Tables .. vii

Abstract .. viii

1. Introduction .. I
1.1 Background ... 2
1.2 Objective Statement .. 3
1.3 Approach .. 3

HI. Analog System Designs.. 5
2.1 PassiveIR System.. 5
2.2 Active Visible Systems... 10
2.3 Active Photo AM System...I1
2.4 Microphone system.. 18
2.5 Active Photo DC-Coupled System .. 23

Il1 Data Collection .. 30

IV. Speech Processing Algorithms ... 32
4.1 Audio Energy Distribution:... 32
4.2 Locating Words: 36

4.2.1 Post processing word boundary verification algorithm used
for isolated and continuous word recognition using no sensor
fusion information: .. 37
4.2.2 Post processing word boundary verification algorithm used
for template processing and isolated word recognition using sensor
fusion information:... 37
4.2.3 Post processing word boundary verification algorithms used
for continuous word recognition using sensor
fusion information: ... 41

4.3 Word Segmentation: .. 42
4.3.1 Photo segmentation post processing: 43

432Audio segmentation post processing:............................... 43
4.4 Template Processing: ... 43
4.5 Speech Recognition: .. 47

4.5.1 Non-sensor fusion word recognition: 47
4.5.2 Sensor fusion word recognition:'................................... 47

V. Test Results ... 49
5.1 Isolated, speaker-dependent recognition using no sensor fusion
information .. 50
5.2 Isolated, speaker-independent recognition using no sensor
fusion information 53
5.3 Isolated, speaker-dependent recognition using sensor fusion
information.................................4.. 54
5.4 Isolated, speaker-independent recognition using sensor fusion
information .. 55
5.5 Continuous, speaker-dependent recognition using no sensor fusion
information ... 55
5.6 Continuous, speaker-dependent recognition using no sensor fusion
information... 55

VI. Conclusions and Recommendations.. 57

AIPE\¶MIX A. Data Acquisition Board Design 61

APPI.NDDC B. Software Design... 69

APPENDIX C. Computer Software.. 75

Bibliography... 197

iv

List of Figures

Figure Page

1. Geometry of the~mal detector ASR test setup I....................... 6

2. IR Detector Circuit .. 8

3. IR speech signals.............*.. 9

4. Diagram of proposed AM photo system .. 12

5. AM photo circuit I.....!.. 14

6. Photograph of audio/photo ASR headset.. 15

7. Example of the word "one" for AM photo signal....................................... 16

8. Parameters used in AM photo equation............................ q..................... 17

9. First version microphone circuit... 20

10. Audio signal for the word "zero". .. 21

11. New microphone circuit... 22

12. Active visible ASR setup ... 24

13. Photo of new headset setup being worn ... 25

14. Geometry used for DC-coupled active photo ASR system 26

15. DC-coupled photo circuit .. 28

16. DC-coupled photo signal for the word "eight"... 29

17. Unfiltered audio energy -plot (N=250) ... 33

18. Filtered audio energy plot (N=250).. 34

19. Filtered audio energy plot (N=300).. 35

20. Filtered audio energy plot (N=400).. 35

21. Example of audio energy distriibution being used to verify photo word.............. 39

22. Example of comparing the phase of the photo and audio signals..................... 42

23. Example of photo frequency information content for the word "one"................ 44

24. Example of audio frequency content for the word "one"............................... 45

25. Example of a photo template for the word "five"...................................... 46

26. Example of an audio template for the word "five"...................................... 47

27. Example of Jill's audio word "three" with breath noise 52

28. Example of "Mary" not keeping her mouth shut prior to speech53

29. Example of photo differences between subjects.. 54

30. Block diagram of A/D board ... 61

31. Main PC interface/control circuit diagram (sheet 1 of 3) 63

32. Timing diagramn for A/D board.....i.. 65

33. A/D board timing/control circuit diagram (sheet 2 of 3) 66

34. A/D board signal processing circuit diagram (sheet 3 of 3)........................... 67

35. Software program block diagram... 69

36. (a.) DTW algorithm path with m=n (b.) DTW algorithm path with m>n......... 73

Ai

List of Tables

Table Page

1. List of isolated anid continuous words used in experiments 30

2. Example of initial word segmentation results .. 40

3. ASR results..5

vii

7 Z-ý--

Abstract

A system has been developed that tracks lip motion using infrared (IR) or visible

detectors. The purpose of this study was to determine if the additional information

obtained from the IR or visible detectors can be used to increase the recognition rate of

audio Automatic Speech Recognition (ASR) systems. To accomplish this goal, several

hardware analog prototypes had to be designed, built and tested. Different detectors (IR

and visible) and modes of operation (active and passive) were tried before a reliable and

useful signal was found. An analog-to-digital (A/D) board was then designed and built

that digitized both the microphone and photo signals. Software algorithms, executed from

a desktop PC, were used to interface wiUh the A/D board, process the digitized data, and

perform certain optical and audio ASR experiments. The results showed that isolated ASR

audio recognition rates increased after ".sing additional information gained from the photo

speech signals. However, the results for the continuous case were inconclusive since not

all of the available photo information was utilized to perform ASR experiments.

Viii

SPEECH RECOGNITION USING VISIBLE AND iNFRARED DETECTORS

L Litroduction

Speech Recognition is the process that converts acoustic sound waves generated by

human organs into the equivalent of a type script file. ASR technology is the human-

machine interface (hardware and/or software) that accomplishes this task without any

outside assistance. For decades now scientists and engineers have been trying, with some

success under carefully controlled conditions, to create such a system. Most of their time

and efforts have been concentrated on deriving and/or implementing special algorithms

that process audio information only. However, there is additional information other than

the audio signal that could be used in the recognition process. Deaf people, who are

trained lip-readers, use this information by observing certain visual queues produced by

the mouth and surrounding areas. This same information is potentially available to ASR

systems which, if usable, will most certainly increase recognition rates.

Why is ASR technology so important? From a military standpoint it should help

bridge the distance between the current generation and next generation aircraft. This is

because the present human-machine interface in cockpit technology seems to be nearing it.F

limits. Current ccckpit tecanology frequently requires the pilot to flip some switches or

turn a knob while usually monitoring a LED (light emitting diode) readout. Voice-

controlled avionics could allow the pilot to command his aircraft simply by talking to it.

The end result should be an increase in fighting performance to help insure that the United

States Air Force maintains its air superiority.

ASR technology could also be important for some office and industrial

applications. It would be much simpler to talk to a computer while data processing.

However, it is the keyboard that is currently the major player for inputting data to a

computer. Simply put, ther. is no commercially available ASR system that is fully

operational at a reasonable price that could even begin to replace the computer keyboard.

1.1 Background

Basically there are two modes of operation for speech recognition: isolated and

continuous. By definition, isolated speech recognition is the identification of singly

spoken words. In other words, the speaker can only say one word per recognition run.

Equipment using this mode of operation is commercially available and has enjoyed some

success in carefully controlled applications. This is due, at least in part, to the fact that the

speaker has to insert a pause between words. In low noise environments the computer can

easily find the word boundaries and activate the necessary algorithms to match the entire

word utterance against stored prototypes of allowed words. However, it is unnatural for

humans to be forced to put pauses between words wlhile talking.

Continuous speech recognition is the ability t1 recognize words in natural speech

(i.e., no forced pauses are required). This mode of operation is the potentially most

important one and unfortunately is also the hardest one to accomplish. The biggest

problem is trying to find where words begin and end in a sentence. However, this problem

may be lessened with the use of additional informatibn in the recognition process.

An optical ASR system incorporates visual and/or infrared (IR) information to help

increase recognition rates. Most reported research into optical ASR utilized a video

camera to record visual data followed by the analysis of static video images to perform

optical ASR [1]. The basic theory of operation is to digitize video images of the mouth at

certain positions and use them as templates while performing ASR. Unfortunately these

are very computationally-intensive systems. The camera alone would output video data at

"5 mega-bytes per second." In addition, a data reduction of about 7500 to 1 had to be

performed on the raw images to extract the mouth information. However, it was shown

that optical ASR greatly increased recognition rates compared to acoustic recognition

2

alone.

The next generation of optical ASR systems were inore dynamic in that they

evolved from using still images as templates to a system that tracked lip motion [2].

Windows were placed at strategic locations surrounding the mouth (one at center of top

lip' one at center of bottom lip, and two at corners of mouth). Algorithms were then used

to calculate the mouth motion within each window. The two results, mouth elongation and

mouth opening, as functions of time were utilized as features. As before, good recognition

results were obtabied.

1.2 Objective Statement

Ile objective of this t.hesis is to determine if additional information obtained from

IR or visible detectors can be used to increase the recognition rate of an audio ASR

system.

1.3 Approach

The first step in this project will be to create an analog circuit that accurately

records lip movement using IR or visible detectors. The circuit will prepare the signal for

further digital processing. However, several designs may be evaluated before the analog

signal can be digitized. This is because a reliable and useful signal must be found which

meets the following specifications for photo ASR [3]:

- The signal must reliably track mouth movement as a function of time.

- The signal has to be repeatable so that similar words have identical signals.

Once an adequate photo speech signal is found, the microphone's analog circuit will then

be designed and built. This circuit will built along with the analog photo circuit on the

same board.

T7he second step will be to design and build a two-channel A/D board that digitizes

3

both the auuiu and photo signals from the output of the analog board. This A/D board will

reside inside a PC. The converted signals will then be stored as raw binary data on a hard

drive inside the computer.

The last step will be to develop the software tools necessary to interface with the

AID board and process the data for performing certain optical and audio ASR experiments

listed below. In each case the main objective will be to obtain as high a recognition rate as

possible.

1. Isolated word, speaker-dependent recognition using no sensor fusion
information.

2. Isolated word speaker-independent recognition using no sensor fusion

information.

3. Isolated word, z'peaker-dependent recognition using sensor fusion information.

4. Isolated word, speaker-independent recognition using sensor fusion information.

5. Continuous word, speaker-dependent recognition using no sensor fusion
information.

6. Continuous word, speaker-independent recognition using rio sensor fusion
information.

7. Continuous word, speaker-dependent recognition using sensor fusion
information.

8. Continuous word, speaker-independent recognition using sensor fusion
information.

4

H. Analog System Designm

2.1 Passive IR System

For a purely passive system (i.e., no optical source), an IR detector should operate

better than a visible detector for ASR. This is mainly because a visible detector is totally

dependent on external lighting (e.g., the sun, office lights, etc.) whereas the IR detector

only requires a source of radiation. Thus it was decided that a passive IR detector would

be first tried for ASR.

The mouth acts as a heat source whose blackbody function peaks at about 9 urn.

Radiation from the mouth is contrasted by the arcas surrounding the mouth which are at a

cooler temperature. This can be seen in an IR video of a person talking. The ASR

specifications for a single IR detector are listed below:

- Spectrum includes 9 urn

- Field of view covers widest mouth opening (about 1 inch at 1/2 inch distance)

- Compact in size

- Have a response time faster than the mouth can move (about 25 Hz)

Several detectors were tested that met these requirements. One in particular had

the best response with respect to mouth movement - a muRata ERIE IRA-F001

pyroelectric detector [4]. These detectors use crystal polarization to sense a change in

temperature. An output voltage only occurs when there is a change in temperature.

Consequently, most thermal measurement applications use a chopper to record the

temperature of still objects [5:7]. However, a chopper should not be necessary in this

effort since the object being measured (the mouth) will be in motion during an ASR

recording.

Figure 1 is used to determine the optimum mouth-to-detector distance for the area

3.

covered by the detector's field-of-view.

)

Figure 1. Geometry of thermal detector ASR test setup

The solution for "d" is shown below.

d = w/2/tan(a/2) = 0.596 inches (1)

where

w = width of mouth at widest position (approximately 1 inch)

d = distance to mouth (inches)

a = detector field of view (80 degrees)

Since pyroelectric detectors are thermal devices, their wavelength response is

theoretically unlimited. As a result, these are ideal for use in the far-JR (8-14 um) band.

It is interesting to note that these detectors are a close cousin of the piezoelectric

microphone. Most manufactures try to eliminate one effect or the other in order to

optimize a particular application (thermal or audio). Quite conceivably someone could

design a single detector to simultaneously record both audio and IR information. Of

course the data streams would be fused together and signal processing would have to be

implemented to separate, if required, the two signals.

The electronic circuit used to interface with this detector is shown in Figure 2.

6

-r /

This is a simple bandpass amplifier circuit with fl (low frequency cutoff) at about 1/2 Hz

and fh (cutoff frequency) at about 5200 Hz.

The circuit along with the detector was mounted on a PC breadboard. The speaker

had to lean over and talk into the detector and maintain about 1/2 inch distance in order to

generate a usable speech signal. The output of the amplifier was measured using a strip

chart recorder which can be seen in Figure 3.

It is quite obvious from Figure 3 that this signal does not meet the photo ASR

requirements - a repeatable signal that reliably tracked mouth motion. Due to the AC

coupling in tie circuit and the inherent nature of the pyroelectric detector, a signal

occurred only while the mouth was moving. However, this test clearly demonstrates that it

is possible to detect the boundary between words. This raises hope that. some useful photo

system may be found. Instead of trying to improve this circuit, it was decided that an

active visible system would be tested next.

*1

0
U

UI

i

I)
S...
0
80

-s
'a.

F. I:..:�
I

I.

I,
I

7

8

I

- -.

CAo

I -~:I::4w

7--

..-- lid

2.2 Active Visible Systems

An active visible ASR system is one that incorporates a LED as a siource of

radiation and a photo detector to receive the signal. The idea is to illuminate the mouth

with the LED and have its reflected signal sensed by the detector. Unlike the thermal

detector, a photo detector detects photons directly. This is accomplished through the

interaction of photons and the P-N junction of the semiconductor. Arriving photons of

sufficient energy will excite electrons across the energy gap. The resultant voltage

potential will be a function of the amount of light that arrives at the surface of these

semiconductors [6:117].

One of the lessens learned with the IR circuit was that head movement caused the

signal to not be repeatable. To compensate for head movement, the visible detector was

mounted, along with the LED and microphone, on a head set.

Another problem with the previous IR circuit was that without a chopper, no

constant voltage output would occur for a constant thermal input. Eventually the voltage

signal would peak and go back to its baseline. Using AC-coupling would have had the

same effect. This configuration is not optimal because it is important that the detector's

output be a function of mouth position. A system had to be designed that would output a

small voltage (around zero) when the mouth was closed and a large, "constant" voltage

when the mouth was opened and remained open (or vice versa).

There are at least two ways to meet these requirements while using an active LED

as the source and a photo detector as the receiver: (1) use DC coupling for the entire

circuit or (2) use AC coupling with an AM (Amplitude Modulation) signal whose

modulation is a function of mouth movement. The advantage of DC-coupling is

"simplicity". All that is required is filtering, amplification, and offset adjustment.

Unfortunately, DC offset adjustments can be cumbersome if the signal is not well-

behaved. For instance, if there are any sizable offset noise shifts, such as headset

10

movement, the photo signal could saturate the electronic amplifier circuits and never be

seen at the output.

The most attractive aspect about AM is that the signal requires no offset

adjustment. However, either the hardware or the software has to perform additional signal

processing to extract the carrier's envelope. Usually an envelope detector is implemented

to perform this operation, in addition to the filtering and amplification that the circuit must

also accomplish.

The AM photo system was chosen, over the DC system, to be evaluated next. It

was feared that there would be excessive noise caused by headset movement. This was due

to the fact that the headset was not lightweight and was somewhat uncomfortable.

2.3 Active Photo AM System: A diagram of the proposed AM system is shown in

Figure 4. The theory of operation is to generate a LED CW (continuous wave) signal that

is amplitude modulated by the mouth. The circuit used an oscillator to generate a constant

frequency square wave which was sent to a LED to generate the CW photo signal. Since

the LED rectified the signal, there was very little difference between using a square wave

instead of a sine wave. The signal was then modulated by the mouth and detected by a

visible-to-near-IR photo detector whose output was subsequently filtered and amplified.

Signal processing was accomplished with software to detect the envelope.

The detector and LED was located fairly lose to the mouth (about 1/4 to 3/4

inches) to obtair as high a S/N as possible. Some noise arrived from surrounding artificial

light sources. To counter this, the CW frequency was adjusted away from the frequencies

of some noise sources such as 60 and 120 Hz.

Advanced Optoelectronic's 44PH05M near photodiode was chosen as the

detector to receive the AM signal [7]. Its large acti ie detection area (17 mm 2) helped

increase the SIN. Likewise, the 44PH05M's peak wavelength occurred at about 950 nm

11

which also helped increase SIN since this specification was located outside the fluorescent

light spectral range and at a dip in that sun's spectral absorption band [6:116].

LED

DVout

Vout

Mouth Mouth Mouth
Closed Opened Closed

Figure 4. Diagram of proposed AM photo system

To transmit the light, a Radio Shack Super-Bright LED was used. This was one of

the brightest yet smallest LEDs sold by Radio Shack.

There are basically two modes of operation for photodiodes - photovoltaic and

photoconductive. The main difference between the two modes is biasing - the

photoconductive mode uses biasing and the photovoltaic mode does not. Another

difference between the two is that the photoconductive mode has a faster response time.

However, it is inherently noisier due to an increase in shot noise [6:119].

12

; . _;-; -; :..- - ., _ _

K.. .

A 450 nsec response-time specification for the photodiode was quoted for the

photovoltaic mode. This is very good since the CW frequency was adjusted to around 279

Hz which is well below both this specification and the LED's rise and fall times of about

1.0 usec. As a result, a fast response time for the detector was not critical and therefore

the photovoltaic mode was selected for this effort.

A schematic of the circuit is shown in Figure 5. A photodiode is basically a current

source that when illuminated, generates an output that is proportional to the light intensity.

To convert the current to a voltage, a transimpedance amplifier was used in the first stage.

The voltage signal was then filtered and amplified which was previously checked by

sweeping a sinusoidal waveform through its bandwidth and observing the results on an

oscilloscope.

Since the A/D boa.rd sampled the photo data at about 2.5 KHz (fs), the signal's

highest frequency cannot exceed fs/2 or about 1.25 KHz. Taking into account system

noise, a good figure-of-merit is fs/5 or 500 Hz. To be safe the CW frequency was

adjusted, as mentioned earlier, to around 279 Hz.

As can be seen in the schematic, the bandpass filter frequencies are 200 and 400

Hz. The output of the bandpass was then amplified twice before being sent to the A/D

board. Since the CW frequency was less than fs/5, aliasing was not a problem and, as a

consequence, a software algorithm was used to extract the signal's envelope.

The headset and analog circuit were adjusted for as large an amplitude signal as

possible that was within the A/D's +/- 2.5 volt range. Also they were adjusted to achieve

the largest mouth open to mouth closed signal as possible. A photo of the head set after

adjustments, is shown in Figure 6. As can be seen, this is a crude version of commercially

available microphone headsets. An additional benefit to using the Radio Shack LED was

that it emitted a visible red spot on the mouth that was used during alignment of the

headset.

13

-. . .• . • - - _+ - . _ .. 7 - . - . . ' : .; -- , i , . - -

- 14

Figure 6. Photograph of audio/photo ASR headset

An erample of the word "one" for the received AM photo signal is shown in Figure

7. Both the time and frequency domains are shown. The small peak at 120 Hz was due to

ambient light noise. As can be seen, the S/N was very good. From this figure, simple

mathematical equations describing the AM signal can now be derived.

For this discussion we will assume that only a single sinusoid signal is emitted

from the output of the LED. This should be valid since the harmonics of the actual

square-wave were filtered-out in the analog circuit.

15

_--

2. FPhoto Time D,-,i2in Speech Plot

2 oro

-2, 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Tirme. (c)

Photo Fr_•qu ncu Domain Si3ech Plot

640 Freq res. D. 061035 iz600s

Start time 0= ecS .• top timno =0. 9992 z;

420

S240
ISO

120

0 ~
0 30 70o 9 120 50 .1. 0 210 240 270 300

FrequencU (Hz) "

Figure 7. Example of the word "one" for AM photo signal

A pictorial description of the components of the active photo setup can be seen in

Figure 8.

16

LED

(h(t)

Figure 8. Parameters used in AM photo equation

The basic AM equation for the above figure is shown below

f(t) = K*[m(t) + h(t) + H]*cos(wc*t) + n(t) (2)

where

f(t) = resultant photo signal received at detector

m(t) = mouth movement signal

h(t) = headset noise signal

H = constant DC offset that is a function of the emitter/receiver distance to mouth.

wc = emitter (carrier) radian frequency

n(t) = ambient light noise from external sources

K = LED oscihdtor gain

Photo ASR information is contained in "m(t)" - the mouth modulation signal. It is

the main signal of concern for which all signal processing (both hardware and software)

was designed around. The majority of the amplitude for "f(t)" came from "H" which was,

up to a certain distance, inversely-proportional to the distance from the headset to the

mouth. When a certain minimum distance was reached, most of the signal did not reflect

17

7 =3.

back into the detector and the amplitude of "f(t)" started to decrease. Increasing the

headset-to-mouth distance had the same affect - after some optimum distance, "H" started

to decrease. This relationship defines "H" as a non-linear geometric function of the

mouth-to-headset distance.

The ambient light noise term is "n(t)" which could be light received from the sun

and/or, as we saw in an earlier figure (see Figure 7), artificial lighting. The affect of this

noise term was minimal since the S/N was high when "H" is adjusted for as large

amplitude as possible. The most significant noise term was "h(t)" which was generated

when there was head movement or, in other words, a change in the headset-to-mouth

distance. The affect on the resultant AM signal "f(t)" was an amplitude change.

Unfortunately "h(t)" was the hardest signal to filter-out due to its signal content (frequency

and amplitude information) being approximately that of the "m(t)" signal. This was

determined after some experimentation with the headset and analog circuit whose output

went to a spectrum analyzer.

The resultant signal, after hardware and software processing, contained both "m(t)"

and "h(t)" terms. Most of the "n(t)" noise term was filtered out by the analog circuit of

Figure 5. But the Nh(t)" noise term still existed even after filtering. However, it was

determined after some trial runs that under static conditions (i.e., the subject was sitting

down and not moving around), the "h(t)" term goes to a very small value and was not

significant.

2.4 NMicrophone system: A schematic of the microphone circuit is shown in Figure 9. A

Ra.*o Shack PC-Mount Condenser Microphone Element was used as the audio transducer.

It was mounted to the side of the photo detector as shown in the photograph of Figure 6.

The microphone's output was amplified between 20 to 420 times and then bandpass

filtered. Since most of the frequency spectrum for audio lies below about 5 KHz [8:33],

18

the highpass cutoff was chosen to be 5 KHz.

Since the microphone's output was also its power supply input, power supply noise

can easily be coupled into the signal. Unfortunately a PC's power supply is very noisy. As

a result, a 9V chemical battery was used to power the microphone instead of the PC's

internal +/- 5V electrical power supply.

An example of the audio word "zero" is shown in Figure 10. The periodic noise

that is seen before the actual word was due to cross-coupling of the photo CW signal into

the audio signal. The frequency of the photo signal w..s putposely decreased so that its

coupled period could be observed. The source of the noise was traced to the flat-ribbon

cable whom lines carried both the photo ard audio signals, in parallel, to and from the

headset. This was a serious problem because it required replacing the current light-weight

ribbon cable with shielded lines such as RG- 188's. The end result would have been a

bulkier, heavier setup that would probably be more uncomfortable thus increasing headset

movement noise "h(t)" for the photo signal. Also there was no guarantee that the coupling

noise would have been completely eliminated. Since there are no clock signals used in the

DC-coupled version, it was decided that this system would be evaluated next before a

major overhaul of the headset was accomplished.

19

J4,4

200

IOX

I/

25hoto time l1omain !5oech P1ot

,,, , •, ,, • ,.,; , ,,, ,, . , , ,. , ,.!]f V(.. , i, • ., I

2
i.5

Z-0. S
0.1 12 0.3 0.4 0.5 0.6 0.7 0.8 0.3 1

new icorfc crophono Tire 1o ntaain aliecnh P I ot

1.21

0t

0 0.1 1 22 6. 33 6.4 0 '.5 0.6 0.7 0.8 0. 3 1

• ~Time (500)

I-n

Figure 10. Audio signal for theword "zero"

Before going on to the next section, note the signal noise between about 0.8 and

1.0 seconds in Figure 10. This was caused by reflections in the transmission line due to

impedance mismatch between the analog circuit and the data acquisition board. The

solution was to put line drivers and receivers at each end of the transmission line. 71e

new microphone interface circuit shown in Figure I1I contains a line driver. With a few

exceptions, this circuit was basically the same as the previous microphone circuit.

21

-'I. - -

'4.

- ('.4

- I g
Ut I

U -, a

Ii
I
S r

U
U
4)

I..*1 0
FI 0

9-, 4)i z

I mid

i

LI

ri

22

I 7 -
/-
-V

V -V 7

7

- /

2.5 Active Photo DC-Coupled System: Silicon Detector Corporation's (SDC) SD-020-

I I-I 1-011 red/IR photodiode was chosen as the detector for the DC-coupled photo system

[9]. In addition, their super high-output GaAIAs IR emitting LED was chosen to be the

emitter. Both devices' have their peak wavelengths matched at about 880 nm. A diagram

of the new setup can be seen in Figure 12.

The new "f(t)" signal, which is shown below, was similar to the AM signal but

without a trigonometric carrier term.

f(t) = K*[m(t) + h(t) + H] + n(t) (3)

where

f(t) = resultant photo signal received at detector

ne(t) = mouth movement signal

h(t) = headset noise signal

H = constant DC offset that is a function of the emitter/receiver distance to mouth.

n(t) = ambient light noise from external sources

K = LED gain

23

- 7 -- ,V __-I-"

+5V

LED-

/- - -0 -"-•

DE + +Vout

Vout

Mouth Mouth Mouth
Closed Opened Closed

Figure 12. Active visible ASR setup

The fastest "m(t)" signal that the photodiode detected should be around 25 Hz [3].

Consequently the photodiode's response time of 12 ns and the LED's rise and fall times of

0.5 usec were overly sufficient. Also, the lowpass filter cutoff for the analog circuit will

be set at about 25 Hz.

The LED's peak spectral wavelength was near-IR which is located outside the

fluorescent light spectral range and between the sun's and tungsten peak wavelength ranges

[6:116]. This helped increase the S/N by moving the modulation signal's wavelength

further away from the ambient light noise's "n(t)" wavelength bandwidth. Black hoods

made out of heat shrink were used to help eliminate ambient light noise. Unfortunately

these hoods also narrowed the field of view. This was in addition to the photodiode's

already small detection surface area (0.2 mm 2 compared to 17 mm 2 for the previously

24

Used Advanced Optoelect~rofics 44PH05M). To increase the, collecting area, two SD-020-

11-11-011 matched detectors were used. One wasrmounted on top of the LED and the

other was mounte d on the bottom of the LEI). A photograph of this new setup is shown in

Figure 13 and its geometry will now be discussed. The next figure,

Figure 13. Photo of new headset setup being worn

Figure 14, is a graphical descriptionl of the g-ometrical parameters involved with the new

photo ASR system headset.

25

......

awW

dh,

dm

Figure 14. Geometry used for DC-coupled active photo ASR system

Where the parameters in the figure are defined below as:

wh = width of hood opening (about 3/16 inches)

a = field of view

wm = distance at mouth covered by field of view

dh = length of hood (about 6/16 inches)

dm = distance from mouth to end of hood (about 3/4 inches)

ds = separation distance of detectors (about 6/16 inches)

The field of view for Figure 14 is solved below.

a = 2*tan-I(dh/2/dm) = 280 (4)

The distance at the mouth covered by a single detector's field of view was:

wm 2*dm*tan(a/2) = 0.4375 inches (5)

26

Taking into account "ds", the approximate total distance covered at the mouth for both

detectors was about 0.8 inches. There was some overlap depending on the distance. In

general, a distance between 1 and 1/2 inches resulted in an optinmum response with respect

to lip movement.

An additional benefit of doubling the active receiving area was an increased S/N.

Furthermore, most of the signal received came from the LED source since a majority of

the "n(t)" term was blocked-out by the black hoods.

The circuit used for the DC-coupled photodiodes is shown in Figure 15. Like the

previous photo circuit, the first op-amp was used as a transimpedance-amplifier.

However, unlike the previous circuit, it is also a low-pass filter at about 5 Hz. A single

pole at this frequency did dampen the "m(t)" signal but, more importantly, it helped

eliminate noise term.-. The second amplifier is a low-pass filter at about 25 Hz. In

addition, it was used to adjust the DC offset and amplify the resultant signal.

27

• .. . '1" " - - '

IT

0 - i

eLrL

W°.W

I,,

-I :

fi ll"

•-•]I lllillll~ll~lllllll fillllh

•~ -. I'. II28

28

... , . ..'7' • , " " > T • . / -.-,L

An example of a DC-coupled photo waveform is shown in Figure 16 for the word

"eight". This was obtained by adjusting the offset of the sig td to about -2.0 volts. The

amplitude was then adjusted for a maximum of about +2.0 volts using the word "five" due

to its wide response. These alignments put the photo signal within a fairly good portion of

the AMD's dynamic range (+/- 2.5 volts). The resultant signals met the photo ASR

requirements and did not affect the audio signal. Consequently, the DC-coupled, active-

photo system was chosen to conduct photo ASR experiments for the rest of this effort.

The audio and photo signals were then digitized by a data acquisition board which was

designed and built during this project. Refer to Appendix A for the details of this board.

SPhoto Time Domain Plot

1.5 eight

4

-2.5

2

0.5

0 0.1 0.2 0 ,4 0.5 0.6 0. Me 0.9 1
Tim (W,)_

Figure 16. DC-coupled photo signal for the word "eight"

29

"..... . , - -. ..- .*,

. ... ,/ •" " / " "? " / .':•,.,' / I' " """ • :

M. Data Collection

Five people were tested: two males over 30 years old, 2 females over 30 years old,

and one 7-year old child. Each subject spoke 12 isolated words and 5 continuous words

made up of the isolated words. A list of these are shown in Table 1.

Table 1. List of isolated and continuous words used in experiments

Isolated Words Continuous Words

zero seven-one-one-one

one one-nine-one

two yes-eight-nine-no

three no-four-seven-yes

four two-eight-two-eight-two-eight

five

six

seven

eight

nine

yes

no

A word scrambling algorithm was used for the isolated words. This was necessary

to keep the test subject from getting comfortable with saying the same words in the same

sequence each time.

The continuous words were made up of isolated words. Several continuous word

sequences were tried with the objective of decreasing the audio recognition rate using no

30

;- .; " /.- '

sensor fusion information. The ones listed in column two seemed to have the lowest audio

recognition rates.

A total of 5 multiples was made for each isolated word and continuous words.

This gave a sum total of 60 isolated (12 *5) runs and 25 continuous (5 *5) runs for each

person.

After some alignment of the headset and adjustment of the electronics, each person

sat in front of the computer screen where, after pressing a key, either an isolated, word or

continuous words would appear. The adult persons then had 1.0 second to say the isolated

word and 2.5 seconds to say the continuous words. The one child (Jill) had 1.5 seconds to

say the isolated word and 3.5 seconds to say the continuous words. After the allotted time

was up, the algorithm then down-loaded the data to hard disk and prompted the speaker to

hit any key to continue. T1he next word would then pop-up at the screen and the process

repeated itself. The entire data-collection run took about 15 minutes for each person.

31

IV. Speech Processing Algorithms

This section de~scribes certain speech processing algorithms used in this thesis. An

overview of the steps involved with processing the templates and conducting isolated and

continuous recognition are list below.

* Both types of words (i.e., photo and audio) were located.

* Both types of word boundaries were verified by comparing their endpoint

locations (template and isolated sensor fusion only).

* Both types of words were then segmented and data was reduced.

e The audio words were then transformed into the frequer.-cy domain and filter-

bank processing was applied to the results.

* Both types of words were then normalized.

* Both types of words were then compared to all templates to obtain a-match.

9 Finally, both types of words had their recognition results compared to decide

which was correct (isolated and continuous sensor fusion only).

The algorithms in this section are also described in Appendix B with respect to

actual software programs and functions included in Appendix C. Refer to Appendixes B

and C for more iniurmaztion related to the software details of this project.

4.1 Audio Energy Distribution: To locate audio word boundaries, the inicr phone's

energy distribution in the time domain was used. However, unlike the photo s gnal, the

audio's average mnagnitude had to first be calculated. This was accomplished rough the

use of a rectangular window that summed the absolute values within a given bin size and

computed the average value. The bin size determined how many data points were

32

averaged from the audio's original voltage signal for a given window of time. The total

number of bins was dependent on the sample's time length, sampling rate, and bin size.

For instance, if a sample's length was chosen to be I second, and the bin size w-s chosen

to be 500 samples, then the resultant energy distribution would be 50 bins in length. This

is a function of the audio's sampling rate which was 25 Ksamples/sec (25000/500 = 50).

Each bin result would then be placed in time half way between the beginning and ending

window time used to calculate that particular bin's average value. Using the same

example, the result of the first bin would be placed at 1/100 seconds assuming the signal

started at zero seconds. It was very important to keep the time information correct since

these results were used to locate audio words and eventually photo words.

Unfortunately pitch variation is so significant (between 80 and 160 Hz for males

and between 160 and 400 Hz for females [10:98]) that there can never be an optimum bin

size for everyone's audio energy distribution. Consequently some experimentation with

the bin size had to be accomplished to obtain a single bin size for all subjects tested.

Figures 17 and 18 are audio energy plots with the bin size, "N", equal to 250. However

Miicrophone Time D Oom.in Energu Plo

++

0., 0.. -1 1 .25 15 .7

' IJ

Time <,ecI)

Figure 17. Unfiltered audio energy plot (N=250)

€33

S/ -.* j"/
/] -I

~+

Microphono Tirft D,:,-in Enerau Plot

t u o.•e L i aih t -tuo-ei aht -t uo-i Qh t.

0.18//

"1. I1'

0. 5 0 . E 0 .7 5 1 i. 1 .5 1 .7 6 2 2 .2 5 2 ,

Figure 18. Filtered audio energy plot (N=250)

Figure 18 was filtered using a five-channel smoothing algorithm which is shown below

(11:257).

y"(t) I/ 116y(t-2) + 114 y(t-l1) + 3/8y(t) + 1/4y(t+ 1) + I/ I6y(t+2) (6)

It is quite apparent from the comparison of these two plots that the smoothing

algorithm helped eliminate false word boundaries while maintaining real word boundaries.

/

However, more experimentation with the bin size "N" was necessary to determine if these

results could be improved upon.

- Figure 19 is the audio's energy distribution for N = 300 and Figure 20 is with N=

400. Both functions were filtered by Equation 6. From these plots, and Figure 18, it was

decided that N = 300 had the best results since the word boundaries for "two and "eight*

could easily be distinguished while simultaneously eliminating most of the false word

34

I'0.:., I

0.2't i/

Microphon~e Time Doma~.in Ener'au Plot

0 1 uft o-ei ght -i o-ei ght -i uo-ei qhi

6, 0.42

*-0.36

-0.24

~,0. 12

0 0.2 0.5 .75 1 1.25 1.5 1.75 2 2.5 25

Figre 9.Filtered audio energy plot (N=300)

0.6 Microphone Time Domain Energt' Plot

c) . 5 4tuo-ei ght-t uo-ei ghi -t uo-ei ght
S0.18

6, 0.42

/7 ~ 0.42

0.24

S0.12

" 0.06

C0 L
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Time (rec)

Figure 20. Filtered audio energy plot (N=400)

35

boundaries. This result was complemented by one author's recommendation that a bin size

of 100-200 for a 10 KHz sampling rate was a suitable choice for distinguishing

between voiced and unvoiced regions 112:1221. This was comforting since the audio was,

for this project, sampled at 25 KHz.

Finally, this bin size was verified with the other four subjects and other continuous

words and was found to be satisfactorily with respect to highlighting word boundaries.

4.2 Locating Words: As previously mentioned, the audio's energy distribution was used

in this effort to locate audio words. Likewise, since previous experiments using camera

recognition found that word boundaries occurred when the mouth was opening, reversed

direction, or simply stopped, the photo's raw voltage signal as a function of time was used

to locate photo words [2:41.

An algorithm was developed that sensed huge changes in amplitude for the purpose

of locating both photo and audio words. This was chosen since word boundaries are

somewhat a function of changes in signal levels. The alg orithm incorporated a gradient

search method to locate slopes of sufficient magnitude which were assumed to be word

boundaries. When completed, this algorithm would return the beginning, ending, and peak

times along with the peak value of every word found.

Sensor fusion was incorporated to help find both types of words. Usually sensor

fusion is a multiple device system, each of which produces an output independent of the

other. The information from the different devices is then analyzed (i.e., "fused together")

to obtain a best guess [31. In other words, sensor fusion usually occurs at the end of the

recognition process. This traditional view of sensor fusion was modified for this effort

since there was additional useful information gained from the comparison of word

boundaries. As a result, sensor fusion was used prior to the recognition process to verify

the location of photo words for both template processing and isolated word recognition, In

36

addition, the photo's word boundary informnation was the only boundary information used

for both signals during the continuous word recognition experiments using sensor fusion

information.

4.2.1 Post processing word boundary verification algorithm used for isolated

and continuous word recognition using no sensor fusion information: The results

returned by the gradient search algorithm for both the isolated and continuous cases was

not processed any further and was the only segmentation data used to conduct word

recognition runs. No sensor fusion processing of any kind was programmed to enhance

the results.

4.2.2 Post processing word boundary verification algorithm used for template

processing and isolated word recognition using sensor fusion Information: Audio

information was not only used to locate audio words, it was also exploited to help verify

isolated photo word boundaries for both template and isolated word processing. This form

of sensor fusion was necessary since the human mouth may not be in the fully closed

position prior to speech. Incorporating sensor fusion techniques during template

processing was Justifiable since it is very important to obtain the best word template

possible. The microphone's signal wa ideal to use for this purpose since the local

environment was fairly quiet. As a consequence, most isolated audio words were not hard

to locate. However, in harsher environ~nents (e.g., airplane cockpits), this methodology

may not be as successful.

After the gradient search algorithn returned its results, another algorithm would

then process the word(s) boundary info ation to determine which word(s) was the correct

word. This algorithm, whose steps are outlined below, used information from both signals

(i.e., sensor fusion).

37

1. All audio and photo peaks were compared and matched. A match occurred

when the distance between two peaks was less than 0.2 seconds. If more than one match

occurred, the match with the minimum distance was chosen.

2. The audio word with the largest peak value was located and its corresponding

word boundaries were initially selected as the correct audio word.

3. The corresponding photo word matched in step 1 to the audio word found in

step 2 was then selected as the correct photo word.

4. If other audio peaks were within +/- 0.25 seconds of the audio word selected in

step 2 then their endpoints were used as the new endpoints of the audio word selected in

step 2.

5.The photo word's endpoints selected in step 3 was correspondingly adjusted to

any new words found in step 4 that match up in step 1.

6. The photo boundaries are verified by comparing them to the boundaries of the

audio word. If the photo's beginning endpoint was less than 0. 1 seconds from the

corresponding matched audio's beginning endpoint, then the photo's beginning endpoint

was made equal to the audio beginning endpoint boundary minus 0.05 seconds. Likewise,

if the photo's ending endpoint was greater than 0. 1 seconds from the correspondin &

* matched audio's ending endpoint, then the photo's ending endpoint was made equal to the

audio ending endpoint plus 0.05 seconds. Figure 21 will now be used as an example of

this entire process.

38

Photo Timn Domain Plot

three

4

i3

1.5

I,

0
0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2

Time (sic)

O,3 Microphone Time Domain Energy Plut

three

M7f2

M~4
CL045

M 1809

~0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Time (s~cd

Figure 21. Example audio energy distribution being used to verify photo word

The gradient-search algorithms would have returned the following approximate

information in Table I based on information given in Figure 21.

39

i

S., •,.'. ,•.F .k / .;K J • ", , i, '-'• • / :1}..

____________ Table 2. Exampl e of initial word se.) mentation results______

Word number Word Beginning Word Ending Peak Time Peak Value

(sec) (sec) (sec) (amplitude)

Photo 1 0.22 0.53 0.4 2.0

Photo 2 0.53 0.75 0.6 4.0

Audio 1 0.4 0.7 0.6 0.84

Audio 2 0.9 0.98 0.94 0.16

Audio 3 0.98 1.18 1.05 0.13

Next, the results of each step the word verification algorithm will be listed.

1. Photo 2 would be matched to Audio 1. This would have been the only match

since all other photo-to-audio peak distances are greater than 0.2 seconds

2. Since it has the maximum peak amplitude (0.84), Audio 1 would be selected as

the initial audio word. Its endpoints (0.4 and 0.7 seconds) would be selected as the correct

word boundaries.

3. Photo 2, which was matched in step I to Audio 1, would then be selected as the

initial photo word. Its endpoints (0.53 and 0.75 seconds) would be selected as the correct

word boundaries.

4. No other audio word peak is within +/- 0.25 seconds of Audio I's peak time (0.6

seconds). If, for example Audio 2's peak time was within 0.6 to 0.85 seconds then its

ending time would have been selected as the new ending time for Audio 1.

5. Since there was no audio endpoint adjustment made in step 4, there will be no

photo endpoint adjustment either.

6. Photo 2's endpoints are now compared to Audio 2's endpoints. Since Photo 2's

= beginning endpoint is greater than Audio's beginning endpoint minus 0. 1 seconds (i.e., 0.3

seconds), no photo beginning endpoint adjustment is required. Likewise, since Photo 2's

40

ending endpoint is less than Audio's en ding endpoint plus 0. 1 seconds (i.e., 0. 8 seconds),

no photo ending endpoint adjustment is required.

The result of the post-processing algorithm would have chosen Photo 2 and Audio 1 as the

correct words.

4.2.3 Post processing word boundary verification algorithms used for

continuous word recognition using sensor fusion information: Basically there was no

post-processing conducted on the gradient search results for continuous word recognition

using sensor fusion information. Put simply, the photo segmentation results returned from

the gradient search algorithm was the only word boundary information used for both audio

and photo signals in conducting continuous word recognition. This clearly discarded word

boundary information from the microphone signal and information obtained from the time

K relationship of the photo signal with respect to the audio signal as depicted in Figure 22.

Notice thtthe. first tophoto humps are normal and can be directly applied in finding the

first two audio words "2-8." However, the second two photo humps are "8s" only. Now

observe the position of these two photo humps with respect to the corresponding audio

humps - the photo humps lag the audio humps. T7his time/phase relationship, not used in

tY,; thesis, can be used to "ferret-out" hidden microphone words.

41

oil

5 Photo Tim@ Domain P1o0

4

3.5

3

S2.5

2

1.5

0.5

0
0 0.3 0.6 0.9 1.2 1.5 1.9 2.1 2.4 2.7 3

Tim (so)

0.5 Hicrophone Time Domain Enerquj Plot

S0.15 tuo-eight-tuo-eight- tuo-eight

0.4

0 0.35

0.25

0.2

0.15

0.05

01

0 0.3 0.6 0.3 1.2 1.5 1.8 2.1 2.4 2.7 3
Time (Cse

Figure 22. Example of comparing the phase of the photo and audio signals

4.3 Word Segmentation: After the word was found and processed, another algorithm

would then strip the word(s) out of the speech time sample given the beginning and ending

word boundary times.

42

/ I

4.3.1 Photo segmentation post processing: Since the photo word was sampled at

such a high rate (2.5 Ksamples/sec), there were about 2500 float values obtained for every

second of photo data. This was 500 times the Nyquist rate of 50 samples/sec. Because of

this, it was de-cided that the number of samples used would be decreased from 2500 to

around 100 for a one second sample. This saved processing time while keeping the

integrity of the signal intact since the resultant photo word was, in effect, sampled at 100

samples/sec. This was still twice the Nyquist rate and sufficient to avoid aliasing. The last

I / step was to normalize the word(s) with respect to its energy content.

4.3.2 Audio segmentation post processing: The stripped-out audio signal was

transformed into the frequency domain using a DFT. Filter banks were then used to

process the resultant signal in order to reduce computation time. Several different filter

bank processing schemes were tried for the purpose of increasing audio recognition rates.

The best results were achieved using the current algorithm which is: between 0 and 2

KHz, approximately 167 12 Hz bandwidth filter banks were used and for the 2 KHz to 4

Kliz interval, approximately 33 60 Hz bandwidth filter banks were used. The log of the

signal's average amplitude was then computed and the result was placed in one of 200

bins. Lastly, the logarithmic filter bank results were normalized with respect to their

energy content.

4.4 Template Processing: Because the mouth moved at a maximum rate of about 25 Hz,

it was decided that the photo signals in the time domain would be used as the main feature

to perform photo ASR. This decision was based on the fact that in the frequency domain,

there is very little photo information below 25 Hz that can be utilized to perform ASR

experiments. In fact, some experimentation has revealed that most of the photo energy

content for most words lies below about 10 Hz of which an example is shown in Figure

43

23. As a result, photo template processing and speech recognition was

Photo Time Domain Plot

4.5 one

4

3.53
U

S2.5
0

2

1.

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sed

Photo Detector rrequency Dou•in Plot

rreq res. 0.60986 Hz
LS 9tart time 0 soc
13MStop "ie I= sec
1211

0269

513

173

0 3 6 3 12 15 18 21 k4 27 30
FrQjqActj (tz)

Figure 23. Example of photo frequency information cuntent for the word "one"

accomplished in the time domain. However, since the cutoff for audio was 5 KHz, there

was much more spectrum information available in the audio frequency domain as

compared to the photo frequency domain. This can be verified by comparing the audio's

frequency spectrum of Figure 24 to the photo's frequency spectrum in Figure 23 for the

44

i',(

same word and speaker. Consequently the frequency domain was chosen for the audio

signal to perform template processing and eventually speech recognition.

5Microphone lime Domain Plot

2 ,one

-2

= 0, &1 0.2 0.3 0.4 0.5 0.6 oV 0.90 . 1
Time (sed.

! 35,9,Microphone Frequency Dom in Plot

I2. rreq res. =0.76257 Hz
•3,1Start tiho 0 sec

287.2 Stop tiiie I sec
251.3

2iL4

L43.9

107.7

-2.8

0 0 0 0 . 100 1800 2100 200 2700 3000
Tireqm. (Hz)

Figure 24. Example of audio frequency content for the word "one"

Two type of templates were created: (1) Speaker-dependent and (2) Speaker-
independent templates. A Dynamic Time Warping (DTW) function was used to select

which one out of the five word multiples, for each word, for each person was to become

45

, 107.7

.rC L

the speaker-dependent template. This algorithm compressed or stretched a waveform with

respect to a reference template and returned the cost to obtain the optimum path. Each

multiple of a word was, in turn, a reference template that was compared to the other four

word multiples. The reference template with the overall lowest cost as compared to the

other four word multiples became the template for that particular word.

The DTW algorithm was also used to process speaker-independent templates. The

results of the speaker-dependent templates were used to decide which template would

become the "speaker-independent" template. Each speaker-dependent template for each

isolated word, for each person was, in turn, a reference template that was compared to

.aother person's speaker-dependent template. The reference template with the overall

lowest cost as compared to the other four speaker-dependent templates became the

"Speaker-independent" template for that particular word. Examples of an actual photo and

audio templates can be seen in Figures 25 and 26 respectively. Note that all templates

were extracted from "isolated" woris. No templates were derived from continuous speech

in this effort.

igr Pho. o Tinm e of iain p Toemplate Plot

0.1fi

0.14

~0.08

~0.02

0 10.7 21.4 32.1 42.8 U'35 64.2 74.8 85.6 86.3 107

Figure 25. Example of a photo template for the word "five"

46

o.z - Mtcrophone Freaupncu rOrain Tpoplaie Ploi

S0.14

&. 0. 12

0.14a. usH

.0.06

Z02

0 1&.9 3&.8 53.7 73.6 99.5 113.4 133. 15&.2 173.1 199
rrotqucyn Dins

Figure 26. Example of an audio termplate for the word "five"

4.5 Speech Recognition:

4.5.1 Non-sensor fusion word recognition: Each person's isolated and

continuous words from Table I were compared to that particular person's sp aker-

dependent template and the speaker-independent template. The photo and a dio templates

with the oerall lowest DTW scores were chosen as the recognized word.

4.5.2 Sensor fusion word recognition: This part of the fusion process was

identical to the standard definition of sensor fusion, "Two different systems, each of which

produces an output word guess inderendent of each other, are fused together to obtain a

best guess." The photo and audio templates with the overall lowest DTW scores were

compared using the sensor fusion decision theory described below to decide which word

was the best guess.

47

* The photo template was selected if the audio DTW cost was greater than 0.17 and

the photo DTW cost was less than 0.005.

* The photo template was selected if the audio DTW cost was greater than 0.6 or

the photo DTW cost was less than 0.0001.

* Otherwise the microphone template was chosen.

These were arrived at empirically with the objective of achieving as high a recognition rate

as possible.

48

' \4

"* ,.,

I I I I II i I II I I

V. Test Results

The speaker-dependent experiments used each person's "speaker-dependent"

template (i.e., "0" through "9" and "yes" and "no") to compare that particular person's

utterance for the words in Table 1. There were five utterances of each word type so the

results are a compilation of 5 utterances of 12 isolated words and 5 utterances of 5

continuous words.

The speaker-independent experiments used the "speaker-inidependent" template

(i.e., "0 through "9" and "yes" and "no") to compare that particular person's utterance for

the words in Table 1. Again, there were five utterances of each word type so the results

for the speaker-independent experiments are a compilation of 5 utterances of 12 isolated

words and 5 utterances of 5 continuous words.

The results for six experiments are shown in Table 3 and a discussion of each result

will follow.

49

Table 3. ASR results___

Experiment I Pat I JntIDn = Jill
1. Isolated photo word, speaker-
dependent recognition using no-sensor 62% 55% 52% 35% 12%
fusion information.____
1. Isolated audio word, speaker-
dependent recognition us-ng no-sensor 87% 88% 87% 88% 53%
fusion information. _______

2. Isolated photo word, speaker-
independent recognition using no-sensor 2% 4% 1% 1% 7
fusion information. _______ ___

2. Isolated audio word, speaker-
independent recognition using no-sensor 33 37 40% 40% 17%
fusion information.________

3. Isolated word, speaker-dependent rJ
recognition using sensor fusion 90% 92% 87% 93% 63
information.___ _____

4. Isolated word, speaker-independent 18 2 2 2 0
recognition using sensor fusion38 42
information. ___________ ___ _____

5. Continuous photo word, speaker-
dependent recognition using no-sensor 10% 20% 19% 17% 5%
fusion information.____
5. Continuous audio word, speaker-42 27 46 40 3%dependent recognition using no-sensor 42 27 46 40 3%
fusion information.___ _________

6. Continuous word, speaker-dependent 40 29 36 3% 3%recognition using sensor fusionJ40 29 36 3% 3%
information. I___ ___ __________

5.1 Isolated word, speaker-dependent recognition using no sensor fusion

Information: As expected the audio signal performed better than the photo signal.

However 95% to 100% audio isolated word recognition rates are achievable today for

many ASR systems. So it was disappointing that the audio did not perform better. This

was especially important for the continuous word recognition experiments using sensor

fusion where the photo information was used to find the audio words. This is useless if

50

audio's recognition algorithm is not very good. It was interesting to n.ate that the word

"Tone" did poorly for all subjects.

The worst audio results, "Jill", were due to the inherent design of the speech

processing algorithms. Recall that the gradient-search algorithm searched for significant

changes in amplitude to decide where word boundaries were located. If it encountered

more than one isolated word then the algorithm would return multiple words even though

there was only one real word. Unfortunately quite a few of Jill's isolated audio word

signals contained one or more small "humps" after the actual word was spoken. These, are

natural breath sounds and an example can be seen in Figure 27.

51

Photo Timo Domain Plot

three

4

:2.5
2

1.

0.5
0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

Microphone Time Domain Enerqu Plot

81 three

(L72

S0.63

- 0.3w

064, 0,.27

C

§1,1

L 0.09

0 0.2 0.4 0.6 .LB I 1.2 1.4 1.6 1.8 2
Time (.)

Figure 27. Example of Jill's audio word "three" with breath noise

The results for the photo signal recognition were good. The second worst photo

results, "Mary", were due to the fact that this person simply did not keep her mouth from

opening or moving prior to saying the actual word. An example of this can be seen in

Figure 28. This is quite natural but played havoc with the algorithm trying to find the

52

"- - , " - - " 7 "

S Photo Timo Uomain Plot
5

ono

4

2.53

2

1.5
I

0.5

0
0 0.1 0,2 0.3 0.1 0.5 0.6 0.7 0.8 0.3

Tie (s5e

Figure 28. Example of "Mary" not keeping her mouth shut prior to speech

words.

"Jill" also had the worst photo results. There were problems with the headset and

offset adjustrrnnts during data recording. This caused some signals to hit the rails and

become basically useless for speech recognition. New data should have been recorded for

Jill which would have certainly improved her photo results.

5.2 Isolated, speaker-independent recognition using no sensor fusion Information:

The recognition rates fo- both the audio and photo information is fairly poor. This is

understandable for the pl ato signal since there were clear differences between the test

subjects as shown in Figure 29. However, the audio should have performed better.

53

/

Photo Time Domain Plot

4.5 nin

4

2.5

2

1.5

I ,

0.5

0 0.1 0.2 0.3 (i 0.a5 0.6 0.7 0.8 0.9,. Time (see)

Photo Time Domain Plot
4.5 fning
4

• • 2.5

2

Si2.

0.

o 7 0.2 0.3 nWt 0.5 0.6 0.7 0.8 0.3
Time (sec)

Figure 29. Example of photo differences between subjects

5.3 Isolated worC, speaker-dependent recognition using sensor fusion information:

One has to compare these results with the microphone results for experiment 1. This

comparison clearly shows that the objective of this thesis has been met - "Using additional

information obtained from IR or visible detectors does increase the recognition rate of an

audio ASR system." About 10% of the words were chosen from the photo results. The

rest of its success is due to using the microphone to help verify photo words. These results

54

could possibly be improved. As we saw earlier in Figure 27, some subjects had breath

noise. In these cases it might have been better to use the photo words to locate the word

boundaries of both signals.

5.4 Isolated word, speaker-independent recognition using sensor fusion information:

One has to compare these results with the microphone results for experiment 2. Again

these results clearly show that using additional photo information can increase recognition

rates.

5.5 Continuous word, speaker-dependent recognition using no sensor fusion

Information: The photo ASR system performed fairly poor. The main problem in using

photo words in the continuos domain is that the words are usually merged together. Using

templates that were derived from isolated words correlated to continuous words only if

there was a clear separation between the words. Word separation depended on the position

of the words with respect to each other.

The microphone results were not much better. Most of the problem was finding

the words. This is understandable since it is the crux of continuos ASR. However, the

other main problem was that the recognition algorithm was performing so poorly.

5.6 Continuous word, speaker-dependent recognition using sensor fusion

Information: One has to compare these results with the microphone results for

experiment 5. The results are not that terrible considering the fact that only photo word

boundaries were used to locate words in both the photo and microphone continuous

signals. Note that most of the words were picked from the microphone results. Put

simply, isolated photo templates perform poorly when used to perform continuous word

ASR. This was observed in experiment 5 where the photo percentage rates were very low.

55

Note that there are two experiments missing: "5.7 Continuous word, speaker-

independent recognition using no sensor flision information" and "5.8 Continuous word,

speaker-independent recognition using senzsor fusion information." Since the results for

experiments 5.5 and 5.6 were so poor, these last two experiment-s using cross-speaker

recognition Would be worse and would probably be useless. As a result, they were

eliminated as experiments.

56

VI. Conclusions and Recommendations

This thesis has clearly proven that using additional information from photo

detectors can increase recognition rates. These results are significant considering no

optical focusing elements were used for the detectors. Unfortunately one has to put a time

limit on such R&D efforts and a lot of my time was spent trying to come up with good

photo signals and sometimes microphone signals, and fighting with software bugs. This

work is by no means finished. Additional experimentation is required for the continuous

sensor-fusion case to clearly show ti,. 'ie results will be superior to using microphone

ASR alone. I am fully confident that this can be done. What I have chosen to do for this

thesis was the simplest continuous sensor-fusion case and is not the optimum case. There

is additional information that can be gained through the comparison of both signals as we

saw in Figure 22. 1 chose to discard this extra information to make the programming

easier and the time to finish shorter.

My recommendations for future microphone/photo efforts are listed below.

-Use the current sensor fusion algorithm for isolated ASR. As we saw, using the

microphone signal to verify photo words and then comparing the recognition results of

each signal can result in a superior isolated ASR system.

-For the continuous ASR system, some investigation and experimentation should

be accomplished to obtain more information on the location of the microphone words. In

this case, use the photo signal to mainly help locate the microphone words. This can be

accomplished easily when there are dips and pauses in the photo signal. Something that I

did not do was to use the magnitudes of either signal (photo or microphone) to determine

if a valid word boundary point was found. In addition, I recommend using the time/phase

57

relationship information of the photo words with respect to the microphone words to help

locate microphone words (see Figure 22). I recommend not using the photo recognition

results. Unless there is a clear separation (i.e., a pause) between words, photo continuous

ASR performs poorly. The results are probably not worth the additional processing time.

- A better headset should be designed that is lighter and more ergonomic. Modem

microphone headsets use lightweight plastics to achieve these requirements. However,

this problem could naturally go away for some pilots who have their helmets specially

fitted. Photodiodes and a LED could then be easily mounted into the helmet.

- An optical attachment to the photo detector such as a Fresnel lens or a miniature

convex thin lens should be experimented with. No adjustment of the photo detector should

be required after the headset (or helmet) is worn. To decrease ambient light noise, a

spatial filter should be used in addition to the Fresnel lens or miniature thin lenses.

However, this may not be required since some lenses are also filters.

- The "h(t)" headset movement noise term needs to be eliminated. Maybe the

headset improvements suggested above will help decrease this noise. If not, additional

signal processing (hardware and/or software) could be used to try and eliminate "h(t)".

One way would be to use the second photodiode to subtract out headset movement. The

setup would use the one detector to measure "h(t)" only and then ubtract it out from the

other detector's signal in the analog circuit by using a differential :mplifier.

- Using filter banks for the audio ASR process is probably why my audio

recognition rates were so low. I recommend adding other recognition schemes (e.g., zero-

crossings, formants, etc.) which are probably better that the single one I have chosen for

58

-/ \ I

the ri~icrophone.

I recommend that if the CWIAM system is used, try optical fibers to send the

light, to a focusing lens. Then use another fiber with another focusing lens to receive the

reflected photons.

-I used the microphone signal to help verify the photo signal for both template

processing and ASR using sensor fusion. If these same experiments were performed under

real-world conditions such as an aircraft cockpit, the current algorithms may not operate

properly. Consequently one may in this case rely more heavily on the photo signal to help

locate both photo and microphone words.

-IR ASR certainly deserves some additional attention. The ideal application may

be continuous ASR where the location of the JR humps could be used mainly to ha-Ip

locate the audio words.

-An additional drea that photo speech technology may be applied to is speech

therapy. This idea came to me when I noticed that I was saying the photo word "zero"

incorrectly for which I promptly corrected. However it was harder for me to tell that I was

slurring the word "zero" using only its audio energy distribution.

-Using a PC with MS-DOS has its shortcomings. I had to implement dynamic

memory allocation algorithms to circumvent memory limitations. The worst was the

DTW algorithm. Using conventional memory allowed only for a maximum of a 320 X

320 float element array. Fortunately about a 100 X 100 size array was only required for

this thesis. I suggest using either a mainframe computer or the newest version of

59

Microsoft C++ for the PC which allows access to extended memory.

- Lastly, here are some recommendations for the A/D board. Try using a First-In-

First-Out (FIFO) chip in the digital board to take some burden cff of the PC interface

circuitry. Also, try using one DMA channel to transfer the photo signal and the other to

transfer the microphone signal. This will automatically decouple the two signals if using

one A/D chip. However, this method will transfer data at a slower rate but should suffice

if the sampling rates are low.

60

SI. .. /

Appendix A. Data Acquisition Board Design

A system block diagram of the digital data acquisition board can be seen in Figure

30. This was a two-channel board that plugged into a standard IBM PC. One channel was

PC Bus

TIMING&1
CONTROL

ANALOGI , A-D

AID -
MUTIPLEXER DATA

ANALOG,2 LATCHES

Figure 30, Block diagram of A/D board

used for the A/D photo signal and the other for the microphone signal. The signals'were

time-multiplexed in order to share the same 12-bit A/D chip. After conversion, the lower

byte and upper nibble of each signal were temporarily stored in latches awaiting

acknowledgment from the computer. The most complex section of the block diagram is

the timing and control. It directed to the multiplexer when it was time to switch input

signals and initiate A/D conversions. It also had to handshake with the PC's

microprocessor and DMA (Direct Memory Access) chip(s) to download digitized data to

the hard drive.

The microphone signal was sampled at 25 KIlz and the photo signal at 2,5 Kill.

Therefore, the current lowpass filters (5 Kltz for the microphone and 25 [iz for the photo)

were adequate to avoid aliaing.

The design specifications called for using 8-bit data transfers for the case where

this board was to be used in a XT PC. This definitely slowed the data transfer rate as

compared to a 16-bit bus. But the advantage was that this board would be compatible in

any standard PC. Incidentally this board started in a XT PC and ended up being used in a

3M6 PC.

Due to the audio's high sampling frequency (25 KlIz), DMA channels were used to

transfer the data from the digital board onto the computer's hard drive. This was faster

than programired 1/0 but unfortunately the interface circuitry was more complex.

The interface circuitry that performed the handshaking with the 8237-5 DMA

controller chip is shown in Figure 31. This is one of three sheets that made up the A/D

board. This circuit was controlled by both the DMA chip and computer software. Two

DMA channels (I and 3) were used to increase data transfer rates to computer memory.

When data was ready to be transferred (i.e., it's been digitized), a DRQ (direct memory

request) line was raised from the PC board. The DMA controller then prioritized the PC

board's request and eventually responded by lowering the corresponding DACK (direct

memory access acknowledge) line. The PC board then used this signal to reset the DRQ

line back low.

When the IOR (I/0) read) line went low, the address on the bus was valid and the

13C board responded by putting its data on the bus. Eventually the DMA controller

reached its; preprogrammed number of transfer cycles and raised the TIC (terminal count)

line. The A/D board senscd this condition and responded by raising the IRQ3 line which

told the software when data in memory was ready to he downloaded to the hard drive.

When the data transfer was complete, the software would then send the "RESET"

command to the A/D board which released the IRQ3 line and started the whole process

over again.

62

- C�d

I0
pg S

aa�

e C
U-

� I.- 4-a

C,,

Co

0

C-'
I-

C-'

C
C-'

C-'

Co

4

4'4 P1

63

________ V

The data acquisition process just described is outlined on the next page for a typical

DMA sequence [13:114,157-159].

1. The data acquisition board sets either the DRQI or DRQ3 signals high when

data is ready to be sent. Two DMA channels were used to speed up data transfers.

2. When ready, the 8237-5 chip responds to the request by setting DACKI or

DACK3 low. The board puts the data onto the data bus and drops the DRQI or DRQ3

lines.

3. The DMA chip then puts the memory location onto the address bus and reads

the data from the board to memory.

4. At the end of a programmed number of bytes transferred, the DMA controller

raises the TIC line.

5. The board ANDS these with the appropriate DACK line and raises the IRQ3.

6. The IRQ3 interrupt is then detected by the computer software for the purpose of

reprogramming the DMA controller and sending a "RESET" 1/0 address to the data

acquisition A/D board.

7. The board receives the "RESET" command and lowers the IRQ3 line.

8. Steps 1 through 7 are repeated under software direction.

64

The A/D board's timing diagram is shown in Figure 32. The timing circuit is

shown in Figure 33 and the data processing circuit is shown in Figure 34.

67 us
1.5 MHz
CLK ...

20 us

50 KHz h.
40us

25 KHz o.

400 us
2.5 KHz ..._400_us_...

CS&D• LJ L& RL

L8.67 us _

BUSY -- LJ...F.F L...F
MUX ""LA OM°G2 F... ... L

A/D OIP fN--
(DO-DI 1)

Figure 32. Timing diagram for A/D board

The heart of the timing is a 1.5 MHz clock oscillator which was down converted to

three main frequencies: 50 KHz, 25 KHz, and 2.5 KHz. The 25 KHz and 2.5 KHz were

the sampling frequencies and the 50 KHz frequency was used to both convert photo

signals (ANALOG2) and latch previously converted microphone data (ANALOGI) out to

74374 registers.

65

0

CW
vyl

-o

ca 0

4+H

X en

an az0

.V

HH*

Ills

110

13 IVAC

67.

The 12-bit A/D chip, a MAX 167, starts a conversion when both CS and RD went

low. The BUSY signal then went low during the conversion time (about 8.67 usec) and

previously converted data appeared at the chip's output (D1/D12) [14]. No,'mal operation

was when the 2.5 KHz pulse was not present. The microphone signal was then

continuously converted and read out to two latches at 25 KHz. The lower byte (D7/DO)

was stored in one latch and the upper nibble (DlI 1/D8) was stored in the other latch. This

continues until the next 2.5 KHz pulse appeared. At this time the multiplexer would then

switch inputs and the photo signal was converted while the last microphone conversion

bits were read out to latches. This occurred after the 2.5 KHz pulse and at the next 50

KHz pulse. The end result was that for every digitized photo word Lhat is sent, 10

microphone words were sent within the same period.

All three circuit diagrams were built on a single 16-bit prototype card from JDR

Microdevices. The card came with built-in 1/0 addressing alretdy decoded which was

convenient since the addresses 300, 301, and 302 were used to initialize the PC board,

activate the timing circuit, and reset the IRQ3 interrupt resrectively. A 74139 chip can be

seen decoding these addresses in Figure 33. As shown in the schematic, the "ON"

command was used to start the timing after the board was initialized using the "INIT"

command. The "RESET" command, which was generated but not used in Figure 34, was

used in Figure 31 to reset the hard interrupt.

68

/

Appendix B. Software Design

The comr:jer and language used for this project was Borland C++ for a PC. A

system block diagram of the software is shown in Figure 35. All software source code is

included in Appendix C.

Acq_dat.c Pit_spc.c Template.c Spchrec.c

cConvdatPc Warp.cI
Figure 35. Software program block diagram

As can be seen in the block diagram, there are four main sub-programs: Acqdat.c,

Plot_spch.c, Template.c, and Spchjec.c. These were controlled by the window-driven

"Speech.c" module which received user-inputted information. The four main sub-

programs will now be discussed.

Data Acquisition: To conduct DMA transfers, the 8237-5 chip had to be re-programmed

before the board was allowed to transfer data. The chosen modes of operation were as

follows:

- Read to memory operations only

- Single byte transfers

69

The memory address for start of transfer and the byte count was also programmed into the

DMA chip.

The data acquisition softwaie programs are "Acqjdat.c" and "DMA.c". These

performed all of the programming, handshaking, and data transfers with the 8237-5 DMA

controller and digital board. "Acq_dat.c" was the main program that controlled the data

transfers. It used miscellaneous DMA routines contained in "DMA.c" most of which were

found in an excellent article on DMA interface hardware and software design [15].

When called, "Acq.dat.c" initialized and activated the acquisition board through

1/0 addressing. It then created two buffers using dynamic memory allocation to conserve

memory. One buffer was used to record the data through DMA transfers while the other,

already filled buffer was being written to disk. Even though these operations appeared to

be accomplished in parallel, they weren't. The DMA chip still had to steal clock cycles

from the CPU to download data to disk.

As mentioned earlier in the digital board design, an interrupt (IRQ3) was used to

tell the computer software when a DMA transfer is completed. The software then

switched buffers and, using the "RESET" command, reset the board to continue the data

acquisition.

The format of the received data was such that one block of data contained 10

integer values of microphone data and 1 integer value of photo data. The number of

integer values transferred depended on the time length of the data to be converted using

the A/D acquisition board. For example, if one second of data was to be recorded then this

equated to (I sec)*(25000 samples/sec) which is equal to 25000 integer values of

microphone data and (1 sec)*(2500 samples/sec) which is equal to 2500 integer values of

photo data. Both signals were then stored together in one binary file. When required, the

data was read back by the "conv_dat.c" program, demultiplexed, and converted to float

values using the A/D 12-bit transfer function.

70

Data Plots: "Plt.spc.c" plotted both time and frequency data for both signals. To plot

amplitude versus frequency, a FFT was performed on the time information through the use

of "FFT.c". Frequency resolution was a function of the available memory and the time

length of the signal. To setup the graph and plot data, the program "Plot.c" was used. The

primary reasons for the data plotting program was to observe the results of algorithms used

and record results for this report.

Template Processing: "Template.c" created the templates for both signals. The first step

before template processing was to locate the isolated words. Word boundaries and

additional information (e.g., peak location, beginning time, ending time, etc.) about the

signals were returned by the "find-.wordso" routine which was called by the

"sensor..fusionsegmentoro" routine. The "find..wordso" routine, which is in the

"Procspc.c" program, located both photo and microphone words. It sensed huge changes

in amplitude to find the words since the boundaries were somewhat a function of changes

in signal levels. It incorporated a gradient search method to locate slopes of sufficient

magnitude which were assumed to be word boundaries.

An algorithm called "sensor_fusionsegmentorO" was programmed to decide

where the words were located using the results of the findwords0 routine. The

sensor.fusion_segmentor0 routine's sole purpose was to verify and correct if necessary the

beginning and ending word boundaries for a given speech signal. The audio signal was

used in this routine to verify the photo's boundaries.

After the word boundaries were verified, two routines, "process.photodataO" and

"processmicdatao," were then used to strip the word out of the speech time sample.

They are located in the "Proc..spc.c" program. Their sole purpose was to convert the

signal for speech processing and then return only the data within the beginning and ending

times sent to them. The auuiu signal was transformed into the frequency domain in the

71

Si • / .
./ , / "

"processmicdataO" routine. Both the photo and audio words were then filtered using a

smoothing algorithm called "filtero" which is located in the "Proc.spc.c" program

[11:257]. This algorithm low-pass filtered the energy distribution to remove unwanted

spikes.

The words are normalized with respect to their energy content after being

processed by either the "processmic_datao" or the "processphodatao" routines. The

normalization routine is called "normalizeo" and is located in the Procspc.c program.

A Dynamic Time Warping (DTW) function was then used in the "Template.c"

program to select which word multiple out of five word multiples was to become the word

template. The DTW algorithm used extracted from a text book on speech recognition

[10:379-382]. Thc author menticned that this was a bare-bones version of the algorithm.

So some modifications were necessary after converting the routine from FORTRAN to

C++.

The DTW's original path width was hard-wired to +/- seven to limit the amount of

warping that was allowed. To add some flexibility for optimization, the constant path

width was changed to a variable path width for the algorithm.

Another path constraint during the warping process was to allow only one step in

either the vertical, diagonal, or horizontal directions. This was changed from one step to a

variable number of steps. However, one had to use this change with caution. Too many

steps in either the horizontal or vertical directions wihi result in a distorted waveform that

is either stretched or compressed out of proportion.

The DTW algorithm's path width was originally calculated from a straight line that

went from (1,1) to (m,n) as shown in Figure 36a. This worked fine if the m = n. When

this condition was not met, the results were disastrous as can be seen in Figure 36b.

Consequently the algorithm was modified to have a variable slope and offset line to

calculate path widths from.

72

,- \ I / "..?
___________ _...!,. /,

Sn = m (m,n)
n --- - - - - - - - - - -7- - -

m>n

I j-s hi t r ,

(Actual line)..

1(What really want)

i n

Figure 36. (a.) DIV algorithm path with m=n (b.) DTW al orithm path wvith m>n

Speech Recognition: The last main program, "Spch...rec.c", performed both isolated and

continuous speech recognition. This program used the same operations as "~Templatexc"

but for isolated or continuous word versus templates. The steps for isolated and

continuous word recognition using "no" sensor fusion are listed below:

*The wurd(s) was found using the "find...wordso" routine.

Th'e word(s) was then stripped out and processed using the "process...photoo" and

"process.mico" routines.

73

- / I 'I

S.... / 'A

* The word(s) was then normalized with respect to its energy content using the

"normalizeo" routine.

e The template(s) with the overall lowest DTW score was chosen as the recognized

word.

The steps for isolated and continuous word recognition using sensor fusion are listed

below:

e The photo and audio words were found using the "sensor~jusion...segmentorO"

routine.

e The photo and audio words were then stripped out and processed using the

"processphotoo" and process._mico" routines.

* The photo and audio words were then normalized with respect to their energy

content using the "normalizeo" routine.

* The photo and audio templates with the overall lowest DTW scores were

compared using the decision theory previously described above for sensor fusion.

74

// ' ; ""r ':,

Appendix (. (Computer S,)ftware

source Code '~

"Spechxc 76

"~Pltspc "".10" i - c c " •.............I.,........ I.......... 1 5

"TTmmplatep". 116

"Spchhrec.c 125

""D A .c " I....... 132

"P lo t.c " 14 0•

"Proc spi .c" .. 4 ... 154

"FFT.c". .."... 175

"Cony dat.c"

"W arp.c". 181

"*Acq dat..... 192

75

"Speccclic" Source Programn

ASI(test piogtam demionstrating the usefulness of using an IR and/or visible sensor
for speech recognition. Miostly written in portable C code.

Ptograrn: speech~c
Programmer: Patrick T. Marshall
Date: 02125/90
()Iganiiation: WRIXYAAWP-2,

WlPAFII, 01145433
Phone: (513) 255-2471

-- --- ---------- ----- ----------------------------- *1-

/* Note: Thc constant varibles "MAXDRIVE, N1AX17XT, *
e ct." are located in the "dir h" include file

I'which is included in "speech~h".

#include "c:\orlandc~thesisk Oeech. h"

/* Function prototylves */
in! alloc-dmna-huf(void); I* Allocate dma buffers *

void intr-setup(void); /* Set up interrupt operation *
void dma-%ctup(void), /* Set up dma operation *
void dia-finish(voidl); I' Called via atexit() mechanism '
void interrupt far dma-isr(void);.
void st~art-dma(char far *,unsigned); /* Start a dmai operation/
void init~hrd(void); /* lnitiali/e A/D board '
void onhbrd(void); I. Turn AID hoard on ~
void se.1up plI(charj 2 5 1,dIouble,dIouhle,douhble,douhble,charl 3 1);
Void plot(float far *,float~float,unsigned long,int);
void labcL~plot(lak-L~structl 161,int);
void print-plot(void);
void staifLplot(void).
void erse__plot(void);
void init~plot(void);
void data-acquisition(void);
void acquirc..data(void);
Void circate-jemps(vciid);
void specechjcec(void);

76

void start...processing...data(void);
void fft2(float far *,float far *,unsigned,int);
void plot~data(void);
void plotjinfo(void);
void plot-tirnc(char,uflsigncd);
void plot..freq(char);

gct-~ef leifo(char(25],uflsigned *,unsigned long*)
convert...dat(float *,unsigned Iong,unsigncd long,char[251);

void average...Smplatc(void);

/~ Begin main function ~

main()

mnt display..sctup-scrCef(void);
void data..acquisitiono;
void plot datao;
int read~string (int, int, int, int, char*, char*, int);
char ask-..question (int, int. char*, char*);
void wait~mcssage (int, mlt, char* har*);
void proccss...acq-.menu (int, int);
void mcssage (int, int, char*, char*);
void clear...mcsage (void);
logical file~exists (char*);
void build~path (char*, char, char*, int);

unsigned char key;

clrscrO;
cursor..offo;
display..sctup-.screcno;
e-.xit = FALSE;
do

key = read jcyo;
switch kAey)

case Fl:
data-acquisitionO; P* Controls DMA data transfer *

e-xit = FALSE;
break;

case F2:

77

plot-dataO;
cursor._.offo;
e..xit = FALSE;
break;

case F3:
creatc...tempso;
e-.xit = FALSE;
break;

case F4:
speech-.reco;
e_.xit = FALSE;
break;

case ESC:
e-xt = TRUE;
break;

)while (! e...xit);
cursorsno;

display...setup-.scrcen()

char disk.~space~bufI33I,memory[33];
struct dfree disk;
unsigned long disk-space,max..par;

clrscrO;
norm aLvideoo;
gotoxy (28, 1);
cputs ("SPEECH RECOGNITION PROGRAM");
create...window(DOUBLE,25,3,55, 16),
gotoxy (6, 1);
textcolor (LIGHTRED);
cputs (Fl");
textcolor (LIGHTORAY);
cputs ("-Data Acquisition)

gotoxy (6,3);
textcolor (LIGHTRED);
cputs ("F2");
textcolor (LIGHTGRAY);
cputs ("-Plot Data ")
gotoxy (6,5);
textcolor (LIGHTRED);
cputs ("FB");

78

textcolor (LIGHTGRAY);
cputs ("-Create Templates)
gotoxy (6,7);
.ýxtcolor (LIGHTRED);
cputs ("174");
textcolor (LIGHTGRAY);

* ~cputs ("-Speech Recognition")
* gotoxy (2,9);

getdfree(0,&disk);
* ~disk..space = (1ong)disk.dfavai1*(1oflg)diSk.df~5clus*

(long) disk. dLbsec;
ultoa(disk..space,disk...space...buf, 10);
cputs ("Disk space: ");
textcolor (LIGH-TORAY),
cputs (disk...space...uf);
cput~s (" bytes");
gotoxy (2,11);
max..par=allocmem(Oxffff, &seg);
tol~mem_..avail = max..par ~<<4
ultoa(toLmem...avail,mlemory, 10);
cputs ("Memory:")
textcolor (LIGHTGRAY);
cputs (memory);
cputs (" bytes");
return;

void data...acquisition()

void process~acq..meflu_(it, int);
unsigned bar, active...bar= 1;

--- unsigned char key;

create_ window(DOUBLE, 17,12,63,2 1);
gotoxy (I, I):
cputs("Start acquisition?");
gotoxy (1,2);
cputs("File Name:")
gotoxy (1,3);
cputs("Window size: (secs)");
gotoxy (1.4);
cputs ("Number of different runs:");
gotoxy (1.5);
cputs ("Number of similar runs:");
gotoxy (1,6);

79

cputs ("Isolated or continuous:");
gotoxy (1,7);
cputs ("Default Drive:");
gotoxy (1,8);
cputs ("Path Name:");
for (bar=l; bar<=8; bar++)
process.acqmenu (bar, NORMAL);

bar = 1;
process acq_menu (active_bar, HIGHLIGHT);
cursor-offO;
e_xit = FALSE;
do
f
key = readj.keyo;
switch (key)

case UPARROW:
if (bar> 1)(

process acq-menu (bar, NORMAL);
bar--;
process.acqmenu (bar, HIGHLIGHT);

}

break;
case DOWNARROW:

if (bar < 8)

process..acqmenu (bar, NORMAL);
bar++;
process..acq-menu (bar, HIGHLIGHT);
I
break;

case CR:
process-acq.menu (bar, ACTIVE);
break;

case ESC:
e.xit = TRUE;
break;

I
} while (! e xit);
if (graphics = FALSE) restore.windowo;
graphics = FALSE;
return; 8

80

void proccss..acq..menu (int bar, int mode)

void read-float (float*, float, float, int);
void readjong (Ion,,*, long, long, int);
void read..int (int*, int, int, int);
void read~char (char*, char, char);
int read_string (int, mnt, int, in, char*, char*, int);
char ask~question (nt, int, char*, char*);
logical file..exists (char*);
unsigned long count;

count = (unsigned long) 16*aIlocmem(0xffff,&sL-gadd);
rnax-s =(float)countl(2.O*(25000.O+2500.O)); P* In secs ~
mints 00
if (init..flag)

ts = max-ts;
status 1
initjflag =OFF;

if (mode - ACTIVE) switch (bar)

case 1: restore_ý.windowo;.
restore-.windowO;
strcpy(path,dir);
strcat(path,dat~flle...name);
if((op..mode[ll0 -'C') && (num_..words > 5)) num..words =5;

if((op_..mode[0] == '1') && (num..words > 12)) num.words =12;

acquire-datao;
e-ýxit =TRUE;
graphics = TRUE;
display...setup...screeno;
return;

case 2: read...string (1, 15,80,18,"New file name:",datjfile_..name,MAXIFILE- 1);
restore-.windowO;
gotoxy (30,2);
clreolO;
break;

case 3: readj'loat (&ts,min-ts,ma~xjs, 10);
gotoxy (30,3);
clreolO;
break;

case 4: rcad~int(&num-words,min...words,max_..words,word~size);,
gotoxy (30,4);.

81

cireolO;
break;

case 5: readjint (&num-uns,minmns,maxruns,run~size);
gotoxy (30,5);
clreolO;
break;

case 6: if(op...mode[0] =--T) op..mode[0] = 'C';
else op_..mode[0] =T'I;
gotoxy (30,6);
clreolO;
break;

case 7: read..string (1,15,80,1 8,"New drive: ",drive,MAXDRIVE- 1);
restore~y'indowo;
gotoxy (30,7);
clreolO);
break;

case 8: read...string (1, 15,80,1 8,"New path name: ",dir,MAXDIR- 1);
restote...windowo;
gotoxy (28,8);
cireolO;
break;

if (mode =HIGHLIGHT 11 mode ==ACTIVE) inverse...vidcoo;
switch (bar)

case 1: gotoxy (30,1);
cprintfC'%s", "YES"I);
break;

case 2: gotoxy (30,2);
cprintf("%s", dat~rile...nare);
break;

case 3: gotoxy (30,3),
cprintf("%f", ts);
break;

case 4: gotoxy (34,4);
cprintf("%3.3d", num...words);
break;

case 5: gotoxy (34,5);
cprintf('"%3.3dM, numjruns);
break;

case 6: gotoxy (30,6);
if(op...mode[O] == 'C') cprintf('%s", "Continuous");
else cprintf("%s", "Isolated");
break;

case 7: gotoxy (35,7);

82

cprintf("%os:", drive);
break;

case 8: gotoxy (28,8);
cprintfC"%s'% dir);
break;

normalvideoo;
return;

void plot-data()

void process...ploLmnlfu (min, int);
unsigned bar,active...bar 1;
unsigned char key;

maxts = 0.8;
create-window(DOUBLE,l5,6,65, 13);
gotoxy (1, 1);
cputs("Start plotting:");
gotoxy (1,2);
cputs("Plot information:");
gotoxy (1,);
cputs("Plot photo time data");
gotoxy (1,4);
cputs("Plot mic time data");
gotoxy (1,5);
cputs("Plot photo freq data");
gotoxy (1,6);
cputs("Plot mic freq data:")
for (bar--I; bare=6; bar++)

process...plot,,Wnu (bar, NORMAL);
bar = 1;
pro~ccssplot~mnlfu (active...bar, HIGHLIGHT);
cursor-..ffO;
e..xit = FALSE;
do

key = readjceyo;
switch (key)

case UPARROW.
if (bar > 1)

83

process-plot-menu (bar, NORMAL);
bar--;
process..plot-menu (bar, HIGHLIGHT);

)
break;

case DOWNARROW:
if (bar < 6)
{
process.plot-menu (bar, NORMAL);
bar++;
process,.plot-menu (bar, HIGHLIGHT);

)
break;

case CR:
process-plot-menu (bar, ACTIVE);
break;

case ESC:
e-xit = TRUE;
break;)

) while (! e xit);
if (graphics == FALSE) restorewindowo;
graphics = FALSE;
return;)

void process-plot-menu(int bar, int mode)
{
void readchar (char*, char, char);
void photo_freq-info(void);
void mic_freq_info(void);
int readstring (int, int, int, int, char*, char*, int);
logical f ile_exists (char*);

e..xit = FALSE:
if (mode =- ACTIVE) switch (bar)
{
case 1: if ((*plot_photo_timeflag = 'y') II

(*plot_photo_time-flag -='Y') II
(*plot mic time flag =='y') II
(*plotmictimeflag == 'Y') II
(*plot photofrcq_flag == 'y') II
(*plot.photo-freq-flag == 'Y') II

84

(*plotmicifreqjflag y=') 11
(*plot~mic~freq-flag -==)

(etr-ynoo
restorewindowo;

strcpy(path,dir);
strcat(path,daLfile-naite);
start-plotO;
e-xit = TRUE;
graphics = TRUE;
display-setup...screenO;

break;
case 2: plot~infoo;,

restore...windowO;
gotoxy (30,2);
clreolO;
break;

case 3: if ((*plo~photojtimejflag == 'y') 11 (*plo~photojime~flag =='Y)

strcpy(&plot-photo-timejfag[0],"NQ');
else

strcpy(&ploLphotojfime...flag[01 ,"YES");
gotoxy (30,3);
cireolO;
break;

case 4: if ((*PIlomic~time - ag == 'y') 11 ('*plot-mic-timejflag =Y)

strcpy(&ploLnhicjtime..flag[0] ,"NO");
else

strcpy(&PloLmic-time...flag[0], "YES");
gotoxy (30,4);
cireolO;
break;

case 5: if ((*ploý-photo-freq-flag=-'y') 11 (*PIlophoto-freq-fIag== 'Y'))
strcpy(&ploLphotojfreq..flag[OI ,"NO");

else

photo...reqjinfoo;
restore...windowO;
strcPy(&PloLphotoifreqiflag[0] ,"YES");

gotoxy (30,5);
cireolO;
break;

case 6: if ((*plot~micjfreqjflag= 'y') 11 (*plo~micjreq~flag=='Y'))
strcpy(&plot-mic...freq...flag[OI ,'NO");

85

else

mic...freq-infoo;
restore...windowO;
st~rcpy(&plot..m icjfreqjflag[0], "YES");

gotoxy (30,6);
cireolO;
break;

if (e...xit == FALSE)

if (mode == HIGHLIGHT 11 mode =ACTIVE) inverse...Videoo;
switch (bar)

case 1: gotoxy (35,1);
cprintf("%s", "YES");
break;

case 2: gotoxy (35,2);
if(de~flag =- TRUE)

cprintf("%s", "DEFAULT");
else

cprintf("%s", "CHANGED");
break;

case 3: gotoxy (35,3);
cprintf(" %s", plot..photojtimejlag);
break;

case 4: gotoxy (35,4);
cprintf("%s", plot mic-timejflag);
break;

case 5: gotoxy (35,5);
cprintf("%s", plot~photojfreq..flag);
break;

case 6: gotoxy (35,6);
cprintf("%s", plot~mic...freqjflag);
break;

normal-videoO;

return;

void ploLinfo()

86

void process-.pi-menu (int, int);
unsigned bar,activej~ar= 1;
unsigned char key;

max-ts 0-8:
create_..window(DOUBLE,15, 12,65,24);
gotoxy (1, 1);
cputs("Star time (sec):");
gotoxy (1,2);
cputs("Stop time (sec):");
gotoxy (10);
cputs("Beginnirig word number:");
gotoxy (1,4;
cputs("Ending word number:");
gotoxy (1,5);
cputs("Beginning word multiple:");
gotoxy (1,6);
cputs("Ending word multiple:");
gotoxy (1,7);
cputs("Plot templates:");
gotoxy (1,8);

* cputs("Plot mic energy:"!);
gotoxy (1,9);
cputs("Data file name:");,
gotoxy (1,10);
cputs("Default Drive:");
gotoxy (1,1)
cputs ("Path Name:");
for (bar=1; bar<=l 1; bar++)

process~pimenu (bar, NORMAL);
bar=1
process...pimeflu (active-.bar, HIGHLIGHT);
cursor...offO;
e_.xit = FAL YE;
'do

key =read JeyO;
switc& (-key)

case UP ARROW:
if (bar > 1)

process..pimenu (bar, NORMAL);
bar--;
process43l. menu (bar, HIGHLIGHT);

87

V. . .--,_• "

I
break;

case DOWN_ARROW:
if (bar < 11)(

process-pi-menu (bar, NORMAL);
bar++;
process-pi_menu (bar, HIGHLIGHT);
)
break;

case CR:
process._pi_menu (bar, ACTIVE);
break;

case ESC:
e-xit = TRUE;
break;I

) while (! e_xit);
exit = FALSE;
graphics = FALSE;
return;I

void processpimenu(int bar, int mooe)
I
void read-float (float*, flo,:t, float, int);
void read-long (long*, long, long, int);
void read_int (int*, int, int, int);
void read_char (char*, char, cOar);

int readstring (int, int, int, int, char*, char*, int);
logical file~exists (char*);
float prevyall ;long prev-val2;in'. prev_val3;char prev.val4[MAXFILE];

e.xit = FALSE;
if (mode = ACTIVE) switch (bar)
I
case I: prevyvall = startjtime;

read_float(&starttime,min_time,max_time,4);
if(prevyvail != start-time) defflag = FALSE;
gotoxy (30,1);
clreol0;
break;

case 2: prev-yvalI = stop-time;
readfloat(&stop_time,minfjme,max_time,4);

88

if(prev-val I= start-time) defjflag --FALSE;
gotoxy (30,2);
cireolO;
break;

case 3: prev~val3 = beg~word;
readjint (&beg-word,0,max-.words,4);
gotoxy (30,3);
clreolO;
break;

case 4: prev...yaI3 = beg-.word;
readjint (&end~word,0,max_..words,4);
if(prev...val3 != end~word) de~flag = FALSE;
gotoxy (30,4);
cireolO;
break;

case 5: prey_val3 = beg..mult;
read - nt (&beg...mult,0,max~plots,4);
if(prev..val3 != beg-.mult) def-flag = FALSE;
gotoxy (30,5);
clreolO;
bireak;

case 6: prev~yal3 = endrnult;
read...nt (&end...mult,0,max~plots,4);
if(prev...val3 != end..mult) defjflag = FALSE;
gotoxy (30,6);
clreolO;
break;

case 7: strcpy(prev..val4,plo~ttflps);
if ((*Plot tMPS== 'y) 1I (*plot tmps== 'Y'))
strcpy(&plot~tmps[0] ,"NO");

else

strcpy(&plot~tmps[0I,"YES");
beg...mult = l;end-mult = 1;

if(*prev~val4 != *plo~tjrps) def..flag =FALSE;

strcpy(daLpath,dir);
strcat(dat-.path,dat-file-namne);
gotoxy (30,7);
clreolO;
break;

case 8: if(plot mic...energy...flag(0] Y') strcpy(&ploLmic..energy-..flag[0] ,"NO0");
else strcpy(&ploLmics.nergy_..flag[0] ,"YES");
gotoxy (30,8);
CIreolO;

89

break;
case 9: strcpy(prev~val4,dat,_file~narne);

read~strirng (1,15,80,1 8,"New file name:",dat file nanie,MAXFILE- 1);
if(prev...aI4 != datffile~..name) defjl.fag = FALSE;
restore..windowo;
gotoxy (30,9);
clreolO;
break;

case 10:strcpy(prev~val4,drive);
read...string (1,15,80,1 8,"New drive: ",drive,MAXDRIVE- 1);
if(prev..yal4 != drive) defjflag = FALSE;
restore.ýwindowo;
gotoxy (30, 10);
cireolO;
break;

case 11 :strcpy(prev.-va14,dir);
read-...string (1,15,80,1 8,"New path name: ",dir,MAXDIR- 1);
restore..windowo;
if(prev..yal4 != dir) defjflag =FALSE;
gotoxy (30,11);
clreolO;
break;

if (e~xit FALSE)

if (mode ==HIGHLIGHT 11 mode ==ACTIVE) inverse..videoo;
switch (bar)

case 1: gotoxy (35,1);
cprintf("%f", statjime);
break;

case 2: gotoxy (35,2);
cprintf("%f", stop..time);
break;

case 3: gotoxy (35,3);
cprintf('%d", beg...word);
break;

case 4: gotoxy (35,4);
cprintf("%d", end...word);
break;

case 5: gotoxy (35,5);
cprintf("%d", beg~mult);
break;

case 6: gotoxy (35,6);

90

break;
case 7: gotoxy (35,7);

cprintf("%s", ploutnps);
break;

case 8: gotoxy (35,8);
cprintf("%s", plot.~.mic..energy..flag);
break;

case 9: gotoXy (32,9);
cprintf("%s", daLfile...name);
break;

case 10:gotoxy (35,10);
cprintfC'%s:", drive);
break;

case I 1:gotoxy (30,11);
cprintfC'%s'1 dir);
break;

normaLvideoO;

return;

void photo-freqjnflfO

void process..photo-freqjiflo~menu(int, int);
unsigned bar,active-bar= 1;
unsigned char key;

maxts = 0.8;
create :window(DOUBLE, 15,10,65,14);
gotoxy (1, 1); H~~
cputs("Start Photo freq (ze ,
gotoxy (1,2);
cputs("Endiflg Photo freq (Hz)?");
gotoxy (1,3);
cputs("Max Photo freq amplitude?");
for (bar--1; bar<=3; bar++)

process~photo~freqjnfo-.meflu(bar, NORMAL);
bar = 1;
process-photo-freqjnflo-mefu(activejb&, HIGHLIGHT);
cursor-.offO;
e-xit =FALSE;

do

91

key = readjkeyo;
switch (key)(

case UPARROW:
if (bar > 1){

process.photoifreq-info_menu(bar, NORMAL);
bar--;
process,.photoifreqinfo_menu (bar, HIGHLIGHT);

}
break;

case DOWNARROW:
if (bar < 6)

process_photoifreq-info_menu(bar, NORMAL);
bar++;
process.photoifreqinfomenu(bar, HIGHLIGHT);
)
break;

ca ,R:
process photojfreqinfomenu(bar, ACTIVE);
break;

case ESC:
e.xit = TRUE;
break;

}
) while (! exit);
exit = FALSE;
graphics = FALSE;
return;

void processphoto-freqinfomenu(int bar, int mode)
(
void readfloat (float*, float, float, int);
void readjong (long*, long, long, int);
void read_int (int*, int, int, int);
void read_char (char*, char, char);
int readstring (int, int, int, int, char*, char*, int);
logical file.!exists (char*);

e_xit = FALSE;
if (mode -- ACTIVE) switch (bar)
{
case 1: readfloat(&startphotoifreq,min.freq,maxfreq,

4);

92

gotoxy (30, 1);
cireol();
break;

case 2: read-float(&end..photojfreq,minjfreq,maxireq,4);
gotoxy (30,2);
cireolO);
break;

case 3: read~float(&max..photo..amp,minjimp,max_...mp, 4);
gotoxy (30,3);
clreolO;
break;

if (e...xit == FALSE)

if (mode == HIGHLIGHT 11 mode ==ACTIVE) inverse...videoo;
switch (bar)

case 1: gotoxy (35,1);
cprintf("%f", start~photojfreq);
break;

case 2: gotoxy (35,2);
cprintf("%f', end..photojfreq);
break;

case 3: gotoxy (35,3);
cprintf("%f", max~photo...amp);
break;

normal-videoO;

return;

void micjfreq-info()

void process .micjfreqjnfo...menu(int, int);
unsigned bar,active-b.-r= 1;
unsigned char key;

max- =O0.8;
create...window(DOUBLE,15, 10,65,14);
gotoxy (1, 1);
cputs("Start MIC freq (Hz)?");
gotoxy (1,2);
cputs("Ending MIC freq (Hz)?");

93

gotoxy (1,3);
cputs("Max MIC freq amplitude?");
for (bar=l; bar<=3; bar++)

processjmic_freqjnfonmenu (bar, NORMAL);
bar-= 1;
process mic frcq infof menu(active-bar, HIGHLIGHT);

cursoroff(;
e_xit = FALSE;
do{

key = read jkeyo;
switch (key)I

case UP-ARROW:
if (bar > 1)

process mic-freq_infofmenu(bar, NORMAL);
bar--;
process mic_freq_info_menu(bar, HIGHLIGHT);

I
break;

case DOWNARROW:
if (bar < 3)(

processmicifrcq-info_menu(bar, NORMAL);
bar++;
processmicfreq_infomenu(bar, HIGHLIGHT);

}
break;

case CR:
process-mic-freq-infof menu(bar, ACTIVE);
break;

"case ESC:
e-xit = TRUE;
break;I

} while (! e xit);
exit = FALSE;
graphics = FALSE;
return;

void process, mic-freq_info_menu(int bar, int mode)

void read float (float*, float, float, int);

94

void readjong (long*, long, long, int);

void readint (int*, nt, mnt, int);
void read-char (char*, char, char);
mnt read-.,.strin, (int, int, int, int, char*, char*, jnt);

logical file_exists (char*);

e-.xit = FALSE;
if (mode == ACTIVE) switch (bar)

case 1: readfloat(&startfliCjfreq,mifl freq,max...req,4);
gotoxy (30, 1);
cireolO;
break;

case 2: redýla(edýijeqmnrqmxfe,)
gotcxy (30,2);
cireolO;
break;

case 3: read-fot&a-i .api_,m~a-m,)
gotoxy (30,3);
cireolO;
break;

if (e...xit == FALSE)

if (mode == HIGHLIGHT 11 mode =ACTIVE) inverse_videoO;

switch (bar)

case 1: gotoxy (35,1);
cprintf("%f', start...icj'req);
break;

case 2: gotoxy (35,2);
cprintfC'%f", end...micj-req);
break;

case 3: gotoxy (35,3);
cprintf("%f', max_.mic..amflp)

normalvyideoo;

return;

void createjtemps()

95

void process-template_info_menu (int, int);
unsigned bar,active.bar=l;
unsigned char key;

max-ts = 0.8;
create_window(DOUBLE,15,9,65,24);
gotoxy (1,1);
cputs("Start template processing:");
gotoxy (1,2);
cputs("Start time (sec):");
gotoxy (1,3);
cputs("Stop time (sec):");
gotoxy (1,4);
cputs("Beginning word number:");
gotoxy (1,5);
cputs("Ending word number:");
gotoxy (1,6);
cputs("Beginning word multiple:");
gotoxy (1,7);
cputs("Ending word multiple:");
gotoxy (1,8);
cputs("DTW window size:");
gotoxy (1,9);
cputs("Max slope step size:");
gotoxy (1,10);
cputs("Average templates?");
"gotoxy (1,11);
cputs("Data file name:");
gotoxy (1,12);
cputs("Template file name:");
gotoxy (1,13);
cputs("Default Drive:");
gotoxy (1,14);
cputs ("Path Name:");
for (bar=l; bar<=14; bar++)

process_.templatejinfomenu (bar, NORMAL);
bar= 1;
process_templateinfomenu (active-bar, HIGHLIGHT);
cursormoff();
e-xit = FALSE;
do
4
key = read_.keyo;
switch (key)

9

96

" /,. .. -'-

case UPARROW:
if (bar > 1)
I
processjtemplatejnfo_menu (bar, NORMAL);
bar--;
processjemplate.infomenu (bai, HIGHLIGHT);

break;
case DOWN_ARROW:

if (bar< 14)

processtemplatejnfomenu (bar, NORMAL);
bar++;
processtemplateinfo_menu (bar, HIGHLIGHT);

I
break;

case CR:
process,.template info-menu (bar, ACTIVE);
break;

case ESC:
e_xit = TRUE;
break;

} while (! exit);
e.xit = FALSE;
graphics = FALSE;
restoreywindow0;
return;

void processjtemplatejinfcjnenu(int bar, int mode)
I
void read_float (f•oat*, float, float, int);
void readjong (long*, long, long, int);
void readjnnf (int*, int, int, int);
void read..har (char*, char, char);
int read-string (int, int, int, int, char*, char*, int);
void average-templates(void);
void createjtemplates(void);
logical rf'e_exists (char*);

e.xit = FALSE;
if (mode = ACTIVE) switch (bar)

9

S..... •97

case 1: restoreý-windowO:restore-windowO;
stv'py(dat 'path,dir);strcat(dat...path,dat.file -name,
strcpy(tmp...path,dir);strcat(tmp,.path,tmp file-namne.,
if(end-word>1 1) end..yord = 11;
clrscrO;
printf(' Processing templates ... please wait!\n");
printfC'\n");
if(best~ternp!ate flag[0] ==W'N) createjtemplateso;
else find_bestjtemplateso;

stop-..time = 1.0;
strcpy(daLpatn,dir);strcat(daLpath,"janet");
strcpy(tmp...path,dir) ;strcat(tmp-..path,"janet");
create...templatesO;,
stopjime = 1.0;
strcpy(datpath,dir) ;strcat(dat~path,'don");
strcpy(tmp...path,dir);strcat(tm ppath, "don");
create templateso;
stop jime = 1.5;
strcpy(daLpath,d;.r);strcat(dat-path,"jill");
st~rcpyQtmp...path,dir);strcat(tmp.,path,"jill");
create-templateso;
stopjime = 1.0;
strcpy(dat..path,dir);strcat(dat~path,"mary");
strcpy(tmp...path,dir);,strcat(tmp..,path," Mary");
create-templat3so;

e-xit = TRUE;graphics = TRUE;lIisplay_..setup__.screenio;
norm al..yideoO ;break;

case 2:ý read-float(&starutime,niinjfime,max~tiwe,4);
gotoxy (30,bar);clreol();break;

case 3: read-float(&stopjtime,ndinjime,maxjtime,4);
gotoxy (30,bar);clreol();break;

case 4: readjint (&beg...word,0,max...words,4);
gotoxy (30,bar);clreol();break;

case 5: read - nt (&end._.word,0,max...words,4);
gotoxy (30,1,ar);clreol();break;

case 6: readjint (&begjxiult,0,max...plots,4);
gotoxy (30,bar);clreol();break;

case 7: read-int (&endm...rult,C,max..plots,4);
gotoxy (30,bar);clreol();break;

case 8: readjint (&window_wid~i,l,20,4);
gotoxy (30,bar);clreol();break;

case 9: read~int (&max~step, 1,20,4);
gotoxy (30,bar);clreol();break-;

98

case 10:if ((*best-template-flag = 'y') 11 (*bestjtemplateiflag =Y')

strcpy(&best-templatei-lag[0I ,"NO"),%;
else

strcPy(&best~template-flag[0], "YES");
gotoxy (30,bar);clreol();brealc;

case 1 1:read..string (1, 15,80,18,"New file name: ",dat...file....name,MAXFILE-1);
restore~windowOfgotoxy (^30,bar);clreol();break;

case 1 2:read_.string (1,15,80,1 8,"New file namne:",tmp~filejinanie,MAXFILE- 1);
restore...windowo;gotoxy (30,bar);clreol();break;

case 13:read-.string (1, 15,80,1 8,"New drive: ",drive,MAXDRIVE- 1);
restore~windowo~gotoxy (30,bar);clreol();break;

case 14:read...string (1,15,80,18,"New path namne: ",dir,MAXDIR-1);
restore.,windowo;gotoxy (30,bar);clreol();break;

if (eý-xit ==FALSE)

if (mode = HIGHLIGHT 11 mode ==ACTIVE) inverse-videoO;
switch (bar)

cae14 ooy(5br;p~t(%""E)bek
case 1: gotoxy (35,bar);cprintf("%fs","YES'D;break;
case 2: gotoxy (35,bar);cprintfC"%f", stor~time);break;
case 3: gotoxy (35,bar);cprintf("%d", stopjime);break;
case 4: gotoxy (35,bar);cprintfC'%d", beg...word);break;
case 5: gotoxy (35,bar);cprintf('%d", bendword);break;
case 6: gotoxy (35,bar);cprintf("%d", beg..mult);break;
case 7: gotoxy (35,bar);cprintf("%d", eindoiK.multh);break;
case 8: gotoxy (35,bar);cprintfC"%d", windwwithp);break;

case 10:gotoxy (35,bar);cprintf("%s",besLtemplate-Jlag);break;
case 1 1:gotoxy (32,bar);cprintfC'%s", daLfilejlame);break;
case 1 2:gotoxy (32,har);cprintfC' %s", imp-..file....nanie);break;
case I 3:gotoxy (35,bar);cprintfC'%s:", drive);break;
case 14:gotoxy (30,bar);cprintf("%s", dir);break;

nornal-videoO;

return;

void speech .jec()

void process...spch-recinfo(int, int.);
unsigned bar,active~bar= 1;

99

unsigned cha

maxts = 0.8;maxstep = 4;windowwidth = 3; /* Default constants */

create_window(DOUBLE, 15,10,65, 2 5);
gotoxy (1,1);
cputs("Start recognition process:");
gotoxy (1,2);
cputs("Beginning word number:");
gotoxy (1,3);
cputs("Ending word number:");
gotoxy (1,4);
cputs("Beginning word multiple:");
gotoxy (1,5);
cputs("Ending word multiple:");
gotoxy (1,6);
cputs("Beginning template number:");
gotoxy (1,7);
cputs("Ending template number:");
gotoxy (1,8);
cputs("DTW window size:");
gotoxy (1,9);
cputs("Max slope step size:");
gotoxy (1,10);
cputs("Data file name:");
gotoxy (1,11);
cputs("Tern plate file name:");
gotoxy (1,12);
cputs("Default Drive:");
gotoxy (1,13);
cputs ("Path Name:");
gotoxy (1,14);
cputs ("Sensor fusion:");
for (bar=l; bar<=14; bar++)

process..spcbjrecinfo(bar, NORMAL);
bar= 1;
proc,.ss.._spch rec info (active_bar, HIGHLIGHT);
cursor..offO;
e.xit = FALSE;
do
{
key = readjkeyo;
switch (key)
(
case, UPARROW:

if (bar > 1)

100

(
process_.spch_recinfo (bar, NORMAL);
bar--;
processspchrecinfo (bar, HIGHLIGHT);
)
break;

case DOWN-ARROW:
if(bar < 14)(
process..spch_rec_info (bar, NORMAL);

bar++;
process-.spchjrecinfo (bar, HIGHLIGHT);

}
break;

case CR:
process spchrec.info (bar, ACTIVE);
break;

case ESC:
e_xit = TRUE;
restorewindowo;
break;I

) while (! e-xit);
normal_videoo;
e_xit = FALSE;
graphics = FALSE;
return;

I

void process_.,spch_.recinfo(int bar, int mode)

void read-float (float*, float, float, int);

void readjong (long*, long, long, int);

void read_int (int*, int, int, int);
void readschar (char*, char, char);
int readstring (int, int, int, irt, char*, char*, int);

logical fileexists(char*);
e.xit = FALSE;
if (mode = ACTIVE) switch (bar)
c
case 1: restore..window();

restore..windowO;
strcpy(dat.path,dir);
strcat(dat..path,dat_file_name);

101

strcpy(Ltmp...path,dir);
stct -mpath,tmp file_ýnamne);

clrscrO;
system("del c:\\borlandc\\thesis\\results.dat");
start~speechjrec(sensorý-fusionfl~fag);

strcpy(dat path,dir) ;strcat(dat~path,"ja~ra-");
strcpy(tmp path,dir) ;strcat(tm p..path,"janet");
start-.speech..ec(sensor _fusion._..flag);
strcpy(dat-path,dir);strcat(daLpath, "don");

start~speechrec(sensorý_iU~onl..flag);
strcpy(dat-path,dir);strcat(dat4)ath,"mary");
strcpy(tmp...path,dir);strcat(tmp-pathI"hIy");'
start~specchjrec(sensoriusion~fiag);
strcpy(dat-path,dir);strcat(datLpath,"jill");

sta't speech..ec(sensoriusionflJlag);

e...xit = TRUE;
graphics = TRUE;
break;

case 2: read-int (&beg...word,0, 17,4);
gotoxy (30,2);
cireolO;
break;

case 3: read-int (&end..word,0, 17,4);
gotoxy (30,3);
cireolO;
break;

case 4: read-int (&beg-.mult,0,max...pIots,4);
gotoxy (30,4);
clreolO;
break;

case 5: read-int (&end..mult,0,mak..plots,4);
gotoxy (30,5);
cireolO;
break;

case 6: read-int (&beg-template..num,0, 1\1,4);
gotoxy (30,6);
clreolO;
break;

case 7: readjint (&end-template...num,0, 1 i4);
gotoxy (30,7);
clreolO);

102

break;
case 8: readj...t (~Yjw'jt,,04

gotoXy (30,8.);
cireolO;
break;

case 9: read-i,, (&Ma-x~step, 1.20,4);
gotoxy (30,9);
cireolO;
break;

case I 0:read_,string (1,1 5,80, 18,"Data file naine: ",dat flle....flae,MAXFILE-1);

restorewyindowO;
gotoxy (30, 10);
clreol();
break;

case 11 :rcad_...tring (1,15,80,18 ,"Temolate file name:w,tmp-iile...naflc,MAXFILE-1);

restore....indowO;
gotoxy (30,11)-;
cireolO;
break;

case I 2:read..striflg (1, 15,80,1 8,"New drive:'4 ,drive,MAXDRIVE- 1);

restore....indowO;
gotoxy (30,12);
clreolO;
break;

case 13:re acdstriflg (1, 15,80,1 8,"New path nanie:",dir,MAXDIR- 1);

restore....indowo;
gotoxy (30,13);
cireolO;
break;

case M4if(sensorJus~lonflag ==FALSE) sensoriusior.Jiag TRUE;

else sensorJusionjlag =FALSE;

gotoxy (30,14);
clreolO;
break-;

if (e -xit =FALSE)

if (mode= HIGHLIGHT 11 mode ACTIVE) inverse...videoO;

switch (bar)

case 1: gotoxy (35, 1);
cprintfC"%s'Y"YES");
break;

case 2: gotoxy (35,2);
cprintfC'%d", beg-.word);

103

break;
case 3: gotoxy (35,3);

cprintf("%d", end..word);
break;

case 4: gotoxy (35,4);
cpiintf('%d", beg mult);
break;

case 5: gotoxy (35,5);
cprintfC'%d", end~mult);
break;

case 6: gotoxy (35,6);
cprintf("%d", beg-template..num);
break;

case 7: gotoxy (35,7);
-rintf('%d", end-template...num);
break;

case 8: gotoxy (35,8);
cprintf("%d", window_wiidth);
break;

case 9: gotoxy (35,9);
cprintf("%d", max-step);
break;

case 1O:go3toxy (35, 10);
cprintf("%s", daLfile~name);
break;

case I11:gotoxy (35,11);
cprintfC'%s", tmp_file-name);
break;

case 12:gotoxy (35,1.2);
cprintf("%s:", drive);
break;

case 13:goftoxy (30,13);
cprintf("%s", dir);
break;

case 14:gotoxy (35,14);
if(sensor~fusion_flag = FALSE) cprintf("%s","NO");
else cprintf("%s", "YES");
break;

normal...videoO;

return;

104

"Plt...spc.c' Source Prograni

/*.......................................----------------

Program contains miscellaneous plot functions used by main..

Program: plt..spc'.c
Programmer: Patrick T. Marshall
Date: 2/25/91
O~rganization: WRDCIAAWP-2,

WPAFB, OH 45433
Phone: (513) 255-2471

-- *
#pragma check...stack(off)
#include <bios.h>
#include ,,time.h>
#include <conio.h>
#include -io.h>
#include ,,fcntl.h>
#iniclude <sys\types.h>
#include <sys\stat~h>
ffinclude <dos.li>
#include .aiath.h>
#include <stdio.h>
#.nclude <stdlib.h>
#include <alloc.h>
ffinclude <dir.h>
#include <sti-ing.h>
#include "c-\borlandic\thesis\logical.h"
#include "c:\borlandc\thesis\plot.h"
#include "c:\borlandc\thesis~xnisc_...spch.h"

/* Function prototypes *
void set..up..plt(char[25],double,double,douible-,double,char[3]);
void plot(float huge *,float,float,unsigned long,int);
void label-plot~labeLstruct[],int~char[]);
void print~plot(void);
void start...plot(void);
void erase~plot(void);
void init-plot(void);
void fft2(float huge *,float huge *,unsigned,jnt);
void plot~data(void);
void plot..tinie(char,unsigned);

105

void plotjfreq(char);
void plot-photo....tmps(char,unsigned);
void plot...mic~...nerg)'(unsigned);
float huge *convenjt d~a(unsigned *,unsigned,char[],unsigned long*)
get~file info(unsigned*,unsignied long *);
char ask...question (int, int, char*, char*);
void waitniessage (int, int, char*, char*);
void message (int, int, char*, char*);
void clear....ressage (void";
void build~path (char*, char*, char*, int);
void restore_.window(void);
extern char da~pathii8o];
extern char plot~mic...energy-..flag[4];

logical up-.plot=FALSE,down...plot=FALSE; /* Plot pos. flags -I/

void starLplot()

unsigred word_cnt;
int i,start~word~stop....word;
char filename[SlI],path 2[80];
FILE *fileptr; /* File pointer for word file "word.lst" *

if(end_word > 16) cnd...word = 16;
if((strcmp(plo~tmtps, "YES") ==0) && (end..word > 11)) end...word =11;

strcpy(filename,"c:\\borlandc\\thesis,\\word.l'st");
if ((fileptr = fopen(filename,"r")) =NULL)

wa.4-message(O,7,"WARNING: fopen of word.lst file failed! '

"Location: starLplot() routine in plt...spc.c");
) ~/'* Load the word array & create files *

for (i=O;i<=end.~.word;i-i+) fgets(word...buffer[i],40,fileptr);
fclose(fileptr);up...plot=FALSE;down..Plot=FALSE;
for(word cnt=beg...word;word cnt<=end...word;word-cnt++)

build..paffi(complete-.file..name,drive,path,word...cnt);
if (*plot-photo-tim-e flag =='Y')

if ((up...plot==TRUE) && (down...plot==TRUE))

erase..ploto;
up...plot=FALSE;
down...plot=FALSE;

if ((up..plot==FALSE) && (down plot==FALSE))

106

iniLpiotO;
if(strcmpC'YES",plot-tmfPs) =0)

build-path2(complete file-name,drive,path,"p",wordsflt);
plot~photo~jmps('p',word--Cft);

else

plot...time('p',wordcLnft); /* Plot photo time *I
if(*plot photo-freqfiag -= 'Y) ploLfreq('p'); /* Plot photo freq*I

if ((up.,.piot;=TRUE) &-& (down..plot==TRUE))
if((printflag[0I = getcho) =='p') print~ploto;

if (*plot micjfimejflag == Y')

if ((up~piot==TRUE) && (down-tplot==TRUE))

erase...ploto;
up...plot=FALSE;
down..plot=FALSE;

if ((up-.plot==FALSE) && (down..plot=PFALSE))
init-ploto;

if(strcmp("YES",ploLtmfps) == 0)

build~path2(complete file-nameý,drive,path,"m",WOrd-Cflt);
ploLphoto~tmps('m',wordCflt);

else if(ploLmic;_.energyil~ag[Oj ='Y')

build-path(complete-file-naine,drive,path,word.Cflt);
plot..mic_..energy(word...Cft);\Ise
plotjtime('m',wordLCflt); /* Plot mic time *

isif (*plot micjfreq....ag == Y') ploLfreq('m'); /* Plot mic freq*/

if\((up~plot==TRUE) && (down~..plot==TRUE))
if((prinLflag[0] = getcho) ='p') print~ploto;

if ((up~plot==TRUE) && (down...plot==FALSE))
if((prinLflag[01 getchO)) == 'p') prinLploto;

107

if ((up~plot==TRU-E) 11 (down..plot==TRUE))
erase...ploto;

return;

void plot..time(char flag,unsigned word .cnt)

double maxjx,max~y,min .x,min..y;
- - -float time res=0O,startj=-O,huge *ybuf;

-- ~unsigned finish...flag,tol-num-.plots,max....n;
unsigned long bufis~ize,run...cnt,i,ii;
int n;
char file[401="",pltpos[3],data...type[41="";
labeLstruct labels[16];

/* Open file to verify toL-num...plots *
getj..ilejnfo(&tolnum~plots,&numbytes);
/* where: tol-nurn..plots = number of words and/or sentences & *

1*numbytes = window size used to record data */
close(file..handle); 1* "filejhndle" is a global v'ariable used by *

I* get -file-info to open files and leave open *
if (end_mult > tol~num...plots) end...mult = tol_num..plots;
if (flag ='p') /* Plot photo data *

max...y = 5.0;min...y = 0.0;
timejres = 1.0/2500.0; /* 2500 = A/D sampling freq. *
strcpy(&flle[0] ,"c:\\borlandc\\thesis\\photmplt.dat");
strcpy(data.aype,"photo");

else /* Plot Mic time data ~

max...y = 2.5;mnin-..y = -2.5;
time-res = 1.0/25000.0; /* 25000 =A/D sampling freq. *
strcpy(&file[0] ,"c:\\borlandc\\thesi&\\mictmplt.dat");
strcpy(datatype,"mic");

min-_x = start~tme;max-x =stop..time;

if (up...plot==FALSE)

up...plot=TRUE;
strcpy(&pltpos[0] "u");

else if (down..plot -FALSE)

108

strcpy(&phPos[O] ,"l");
down..~plot=TRUE;

set-up plt(flle,max__c,mif..x,maxLy,mif-y~pltpos);
for (i=beg-mult;i<=efld_..fult;i++)

sta~tj = start-fime;
finish...flag = TRUE; /* Tells convert~data that this is the 1st run *
do

y_.buf = convert_data(&finis1-flag,i,dtataype,&buf~5ize);
if (flag == 'p') for(ii=O;ii<buf,..sizc;ii++) y__.buflii) += 2.5;
plot(yj~ufftimejes,start-Lbuf~sizei- 1);
farfree((void *)y buf);start~t += buLsi~.-c *tiniej.es;

if (firnishjflag == TRUE) break;

while (finisfr.flag ! TRUE);

strcpy(labels[O] .l,wordj..uffer[wordLýflt]);
strcpy(labels[OI.t,"i");
labels[O].lt =0;
label-.plot(labels 1 1,pltpos);
return;

void plot-freq(char flag)

double max--x=0-,max.~y0-; /* Max x -and y values ~

double min._.x=0O, min..y=0; 1* Min x and y values *
double min...volts,absolute..mifl~volts;
float xjbeg,mag,freq-res,fs,flew-fs;

* float stopj,startjtvolts[1],maxjiinp;
float huge *in-.buf~huge *real-arr,huge *img-arr;
int INV,skip~flag;
char fd[0="pto[jdt~yp(]po-no51pu r 121;

- - ~unsigned long i,real2..size,new..buf....ize,maxjifts;
unsigned long num~ints,max...aff..size,couInt,max-fl,beg-i,eld.i;
unsigned long stopscount;
unsigned tol-ium-plots,run-snt,finish.J'Iag,M,skip._ift;
label..struct labels[161;
logical neg-volts...flag,run..flag;
F-ILE 4 tmpfile;

/* Open file to verify toLnum..plots *
get-fieeinfo(&toLfum41lots,&lumbytes);

109

/* where: tol num-runs =number of words and/or sentences & ~
1*numbytes = window size used to record data */

close(file..handle); /* "file-handle"t is a global variable usedJ by *
/* geLfile-info to open files and leave open *

if (en&..mult > tol~num...plots) end..mult = tol-numn.plots;
if (flag == p') /* Plot photo freq *

strcpy(file,"c:\\borlandc\\thesis\\phofrplt.dat");
minx = start~photojfreq~max-x = end..photo-freq;
min-..y = 0;max..y = max...photo-amp;
strcpy(datatype,"p");
fs = 2500.0; /* Sampling freq in words/sec *

else /* Plot Mic freq data *

strcpy(file,"c:\\borlanrdc\\thesis\\micfrplt.dat");
mm _x = s~~t:,1micjfreq;max_..x = end..micjfreq;
min-y = 0;max...y = max....mic..amp;
strcpy(datatype,"mic");
fs = 25000.0; /* Sampling freq in words/sec *

-- 7-; - stopjt = stop.time;
starLt = start.time;
if (up...plot=FAL-SE)

up...plot=TRUE;
strcpy(&pltpos[O] ,"u");

else if (down..plot=FALSE)

strcpy(&pltpos[0] ,'l");
-~ down-plot=TRUE;

beg...i = fs*start-t;end-i = fs*stop-t;
num~ints = end-i-begji;
for (run cnt=begjnult;run cnt<=end..Mult;run..cnt++)

4 ~/*' Use the following temp file to process data *
if ((trnpfile = fopen("c:\\borlandc\\thesis\\tmp.dat","wb+")) =NULL)

printf("ERROR(l): data file open failed'\n");
prinif("Location: plotjreq routine in plLspc.c.\n");
perror(")
exit(1);

finish-.flag =TRUE; /* Tells converLdata 1st run *

110

stop-count=0;
do

in~buf = converdata(&f inishjlag,runSnt,datatype,&buf..size);
K-- - Write((void *)jn~buf~sizeof(float),bufsize,tpfile);

farfree((void *)in-buO);
stop~count += buf...size;

whil(,(finish~flag==FALSE);
rnaxjrnts = frzrcorelefto/4/2;
if(nurn ints~max~ints) M = floor(loglO(numjnts)/loglO(2));
else M =floor(loglO(maxjnts)IloglO(2));

if(M>13) M = 13; /* An upper limit FF1' processing time constraint *
maxjints = pow(2,M);
skip-int = floor((float)numjints/(iloat)maxjints);
if ((real~arr = farcalloc(maxjnts,sizoof(float))) =-- NULL)

pnintf("ERROR(2): real array memory allocation failed.\n");
printf("num - nts = %lu \n",nvmjnts);
perror("");
printf("Location: plotj-req() routine in plt..spc.cAn");
exit(1);

if ((img...arr = farcalloc(max-ints,sizeof(float))) ==NULL)

printf("ERROR(3): img array memory allocation failed.\n");
printf("num - nts = %lu \n",numints);
perror("");
printf("Location: plot~freq() routine in plt~spc.c.\n");
farfree((void *)reai~mr);
exit(1);

if (fseek(tmpfile,OL,SEEK...SET) !=0) _

printf("EPRQOR(4): data file fseek failed !n");
printf("Location: ploLfreq() routine in plt-spc.cAn");
peffor("");
exit(l);

count = 0;skip...flag = skipint + 1;
for(i=0O;i<stopscount-,i++)

fread((void *)volts,sizeof(float), lL,tmpfile);
if(skip..flag > skipint) 1* Throw away, data to meet end points ~

realarr[count] volts[01;
count++-;
skip~flag, =0;

skip...flag-H-;

- fclose(tmpfile): /* Calc new fs based on skipped data *

newjfs=(float)coL'ntl(stop-t-start-t);
INV = FALSE;
fft2(real~arr,img..arr,M,INV);
max-amp 1-.0;
for (i=-O;i<max..ints;i++)

real...arr[i] = log 10(sqrt(pow(real~arrf i] ,2)+pow(img...arr[iI,2)));
max..amp =max(reaI~arr[i],maxrainp);

farfree((void *)img-arr)*
K fr.eqjes = new-fs/(float)maxjints;

if(run~snt =beg~mult)

if(maxjy<max-amp) max-y = max~amp;
if(max~x>freq_res*max -ints/2.0) max 7x =freq-res*max ints/2.0;
set~up..plt(file,maxx,min_..x,max..~ in.y,pltpos);

plot(realar,freq...res,0.0,max-intsI2,run-cnt- 1);
farfree((void *)real-ar);

strcpy(-,lek-infc,"Freq re~s.=
vrvt(freq...res,5,p.. bvffer);
strcat(plot info,p...buffer);
strcat(plotjnfo," Hz");
strcpy(labels[0]Il,ploLinfo);
strcpy(labels[0] .t,"i");
labelstIO].lt = 0;
strcpy(ploLinfo, "Start time
gcvt(starLt,5,p-buffer);
strcat(ploLinfo,p...buffer);
strcat(ploLinfo," sec");
strcpy(labels[1].1,plotjnfo);
strcpy(labels[1].t4"i");
labels[I .It = 0;
strcpy(plrtjnfo,"S top time
gcvt(stop-t,5,p...buffer)*;
strcat(pio~info,p...buffer);
strcat(plotjnfo," sec");

112

strcpy(labels[2].l,plot..infb);
vtrcpy(labels[21. t, "i");
lab-ls[2].lt = 0;
labeI~plot(labels,3,pltpos);
return;

void plrt-photojtmps(char typejflag,unsigned word....nt)

double max__x~max~y,min~x,min..y;
float huge *temDIate_buf,
unsigned numread,finish..flag,tol-num...plots;
unsigned long buf size,run-cnt,i,f.le.si7,;
char file[40]="",pltpos[3];
jabeL~struct labels[16];
FILE *ffie-pt;

if ((file~ptr = fopen(complete_file_nune,"rb")) ==NULL)

wait...message(0,7,"ERROR(): data file open failed!",
"Location: plot photo tmps routine in plt-spc.c");
perror("")
exit(1);

/*I Find file size in bytes *
if ((file..size =filelength(fileno(file...ptx))) == -I QL

printf("ERROR(2): file size routine failed!\.n");
printf("'Location: plot-photojtmps routine in plLspc.c\n");
pe.-or("");
exit(J;

) ~/* Convert file size to number of floats *
buLsize = file_size/4;

I* Read choosen template_buf number *
if ((template....buf farcailoc(buf..size+1 ,sizeof(float))) =NULL)

printf("ERROR(3): template buf buffer allocation failed !\n);
printf("Location: ploi photo-t....ps routine in plLspc.c\n");
perror("');
exit(1);

numread=fread((void *)template_ buf~sizeof(float),buf size file Ptr);
fclose(file~plr);
max-.y = -50.0;min v 0 00;min...x = 0;max...x = buf~size-l;
for(i=0;i<buf .size~i++) max...y =max(max-y,teinplate~bufqi]);

113

if(type flag =='p') strcpy(&filef 0],"c:\\borlanidc.\\thesis\\pi)tptemp.dat");
else strcpy(&file[0] ,"c:\\borlandc\\thesis\\ltrnI~ternp.dat"');
if (up...plot==FALSE)

up-plot=T U13;
strcpy(,&pltpos[Oju)

else if (dowiuplot==FALSE)

strcpy(&pltpos[Oj,'T')-,
down..plot=TRUE;

se~t..up~plt(file,max'Qx,mrni x,raxy~ an.~~lps

plot(template huf.I,Olbu Si'.I);
farfrefe((void *)tcnlplate~buf);
strcpy(lbIbls[0] .l,word..bufferfword cnt]);
strcpy(1-ibeisf 0].t,"i");
labels[O].It = 0;
label_p!ot(Iabels, 1 ,pltpos);
return;

void plot..mic..energy(uisigned wo~rd__cnt)

float *energy(float *tjrne-nv,unsigned long *n,unsjglled mult..nibm);
float *filter data(float.*,unsigned long~unsigned Iona*);
double max-x,nax..y~in-x,miny;
float huge *energy~buf,tjme inv;
unsigned i,nldl-nurn,tol-num...losrax..n;
unsigned long n;
char file[40]='",pltpos(L3'J;
label-struct labelsf 161;

geLfile -nfo(&tol~num...plots,&nur-nbytes);
P* where: tol.num...plots = number of words and/or sentences & *
P* numbytes = window s~ze used to record data */
close(file_handle); P* 'filc..handle" is a global variable used by *

P* geLfilejinfo to open files and leave open *
if (end...mult > tol-num...ptots) endjnult =tol_num...plots;

if(up...plot==FALSE)

up-plot=TRUE;
strcpy(&pltpos[0] ,"utt);

else if (down plot==FALSE)

114

strcpy(&pltposOS[0I.T;

strcpy(&rilef 0],"c:\\borlandc\\thesis\\Cflergy.dat');

energy-.buf = energy(&timc~inv,&fl,mult-lum);
energy...buf = fjlter data(energy-.bufnfl,&l);
energy..buf = filter-data(ehergy-.buf~n&)
for(i=-O;i<n;i++) max..y = max(max.$~efergy-bufli])

plot(energy...buf,timejflv,0,f,mult~flum' 1);
farfree((void *)energyjuf)

strcpy(labels(01.l,word~buffer(word-cnti);

lubels[IJ.lL = 0;
labcl~plot(labels, I ,pltpos);
return;

115

"Template.c" Source Program

Program contains speech processing functions used by main. Creates
speech audio and photo templates.

Program: template.c

Programmer: Patrick T. Marshall
Date: 2/25/91
Organization: WRDC/AAWP-2,

WPAFB, OH 45433
Phone: (513) 255-2471

#include <bios.hi>
#include <time.h>
#include <conio.h>
#include <io.h>
#include <cntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <dos.h>
#include <math.h>

#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <dir.h>
#include <string.h>
#include "c:\borlandc\thesis\logical.h"
#include "c:\borlandc\thesis\plot.h"

extern unsigned long bufsize; /* Buffer size *1
extem unsigned long numbytes; /* Total number of bytes to record */
exter int file_handle,windowwidth,max step;
extern unsigned seg;
extem unsigned long to!-meniavail,bufcount;
extem char wordbufferl 12][20]; /* Used to store word name strings */
extern char drive[MAXDRIVE],filename[MAXFILE],ext[MAXEXT];
extem char dat.path[80],tmppath[80],avejtemplate..flag[4];
extern char complete filename[MAXPATH-],dir[MAXDIR];
extern char ir..flag[4],mic_flag[4],printflag[4];
exter int begword,endword;
exter int beg..mult,end-mult;

116

~/* '7

//
_ _ ' / "

extern int num~words;
extern float start._.time,stoptime;

P* Function protot ypes ~
void setjip..plt(char[],double,double~double,double,charfj);
void plot(float huge *,float,float,unsigned long,int);
void plot2(float huge*,float huge*,unsigned,int);
void label~plot(labelstruct[] ,int,char[]);
void print...plot.(void);
void erase..plot(void);
void init-pioto;
float *iso~pho env(float huge*,unsigned louig,unsigned*)
float *iso~mic~fft(unsjgned,unsigned*);
float *nomialize(unsigned,float huge*,float *,unsigned*)
float huge *convert-data(unsigned *,unsjgried,char[l,unsigned long*)
get..filej-nfo(unsigned*,unsigned long *);
char ask..question (int, mnt, char*, char*);
void wait..message (int, int, char*, char*);,
void message (hit, int, char*, char*);
void clear....ressage (void);
void build..path (char*, char*, char*, int);
void buil&..path2 (chaT*, char*, char*, char*, min);
void restore.,window(void);
float mm _distance(float[] ,fioatfl,unsigned);

char path2[80];
unsigned word_cnt;

The following creates word templates and~ stores results to a file.

void createj..emplates()

void sensorjusion~segmentor(char[],char);
void find..teniplate(char[],char,char[]);
int i;
char tmpfile...name[5O];
char filename(811;
FILE *filtr P* File pointer for word file "word.lst" *

strcpy(filename,"c:\\borlandc\\thesis\\isoword.lst");
if(end..word > 11) enc~word = 11;
if ((fileptr = fopen(filename,"r")) == NULL)

wait..message(O,7,"ERROR(1): fopen of word.lst file failed! "

-1 117

"Location: create-templates() routine in TEMPLATE.C');
exit(O);

) /~P Load the word array *
for (i-O~i<=end -word;i++) fgets(word...buffer[iI,20,fileptr);
fcose(fileptr);
for(word-cnt=beg...word;word..cnt<=end...word;word-cnt++)

build...path(compiete...file...name,drive,dat-path,word...cnt);
sensor-fusion-segmentor(complete...file~name,'i');

build~path2(tmp-file-..name,drive,tmp...path,"p",word-cnt);
printf("Data file: %s\n",complete.jile...name);
printf("Template file: %s\n",tmp....ile...name);
find template(complefile....-name,'p',tmp..Hie..namie);

_ul..path2(tmp fileý_name,drive,tmp-path,"m",wordcpnt);
printfQ'Data file: %sAn"complete...file~name);
printf("Template file: %sAn",tmp-file-.name);
find_template(completefile..nam e,'m',tmpjiHe..nama);

return;

The following is called from create-tempiates() routine.
Its purpose is to find the best template for each word, for each person.
The DWT algorithm is used to determine which template is the best for
each word.

void findjtemplate(char filenanie[],char datatype,char template-file_name[])

unsigned *warp(float*,unsigned,float*,unsigned,float*,unsigned*);
float *process pho data(char[] ,float,fioat,unsigned,unsigned*);
float *process mic...data(char[I,float,float,unsigned,unsigned*);
float *find~words(char[],unsigned*,char,unsigned);
void dpfunc(unsigned,unsigned*,unsigned*);
float *filterdata4float*,unsigned,unsigned*);
float *proc dat, *ave _buf,*word times;
float tcost,max..y,fs, *template, *test..pat, *warped~buf;
float mm _tol~cost,tol...cost,beg...time,end-time;
unsigned long buf..size;
unsigned template-num,max mult~num,k,peakn,word-len,word~dis;
unsigned i,ii,jj,count--O,*map,nl3O,1,1egJ,end~i;
unsigned num_words found template-len;
char file[50];

118

label~struct labels[16];
FILE *fptr[6],*outfjle,*timeptr;

strcpy(completej fiename,filename);
get..filejnfo(&max_..mult-num,&numbytes);
1* where: max-mult..num = number of words and/or sentences & ~

1* numbytes = window size used to record data *
close(filejihandle); /* "file...handle" is a global variable used by *

/* get~filejinfo to open files and leave open *
if (end~mult > max_multjium) end_mult = max_inult~num;
begji=beg-.mult;endji=end-m.rult;
if(datajtype = 'p) fs = 2500.0;
else fs = 25000.0;
system("del *$$)

strcpy(&file[0] ,"c:\\borhindc\\thesis\\photmplt.dat");
init-ploto;
set..up...plt(file, I1 0,0,0.3,0,"u");

for (i=beg i;i<=endji;i++) I* Create temporary word files *

if((fptr[i] tmpfileo) =NULL)

printfC'ERROR(2): temporary file open failed !n");
printf("Location: find-template() routine in template~cn");
perror(hN);exit(0);

* lf(data...type =p')

build...path(fide,drive,"\\borlandc\\thesis\\phowvrdtm",i);
else build..path(file,drive,"\\borlandc\\thesis\\micwrdtm",i);
if((timeptr = fopen(file,"rb")) == NULL)

4 ~/* Pointer to word endpoint time file *
wait.,.message(0,7,"ERROR(3): data file open' failed!"

"Location: find_templateO routine in templatexc");
perror(" ");exit(0);

fread(&fium_..wordsjfound,sizeof(unsigned), lL,timeptr);
fread(&begjtime,sizeof(float), I L,timeptr);
fread(&enc~time,sizeof(float),lL,timeptr);
fclose(tinieptr);
if(data-.type ==p') template = process...phojiata(complete fileý_name,

beg..time,end...time,i,&n);
else template = process...mic...data(complete..filejiame,

beg-time,end...time,i,&n);
template =normalize(n,template,&max..y,&peak..n);

119

plot(template, 1 .0,0.0,n,2);

if(data..type = 'p') template =filter-data(template,n,&n);

fwrite((void *)template,sizeof(float),n,fptr[i]);
farfree((void *)template);

for (i=begji;i<=end - ;i++) rewind(fptr[i]);
minjtolcpost = le+5;tol...cost = 0;
for (i=beg.J;i<=-.nd-i;i++)

P " Find min. cost. multiple word file to be DWT template *
n =(unsigned)filelength(fileno(fptr[i]));

n 1=sizeof(float);
if(template = farcalloc(n+l,sizeof(float))) = NULL)

P I Buffer to hold averaged data *
pri-ntf("ERROR(3): buffer allocation failed !n");
printf("Location: find_template() routine in template.c\n");
perror("');exit(O);

fread((void *)template,sizeof(float),n,fpt-[il);
rewind(fptr[i]);
templatejlen = n
for (ii=begji;ii<=endji;ii-s+)

MR~i = 0)
MR~i = endji) break;
else ii++;

n =(unsigned)filelength(fileno(fptr[ii]));
n /= sizeof(float);
if((test..pat = farcalloc(n+1,sizeof(float))) =NULL)

P I Buffer to hold averaged data */
printf("ERROR(4): buffer allocation failed !n");
printf("Location: findjýemplate() routine in template~cn");
perror("");exit(0);

fread((void *)test-Pat,sizeof(float),n,fptr[ii]);
rewind(fptrfii]);
if(data-type == 'p)

max-..step = 2;
windoW~width =1;

else

max-.step =2;

120

window..width =4;

map = warp (testýpat,n- 1,template,templatejlen- 1,&tcost,&k);
tol-cost += tCost;
farfree((void *)test pat);farfree((void *)map);

minjtolcost =niin(min...tol~cost,tol~cost);
if(minjol~ccst - tol~cost) templatejium i
farfree((void *)template);tol cost =0;

for (i=beg..i;i<-endji;i++) rewind~fptrfi]);
n = (unsigned)filelength(fileno(fptr[template..num]));
n /= sizeof(float);
if((template = farcalloc(n+1,sizeof(float))) ==NULL)

P / Buffer to hold averaged data *
printf(TR.ROR(5): buffer allocation failed !\n"');
printf("Location: findjtemplate() routine in temiplate~cn");
perror("");exit(0);

fread(&template[0],sizeof(float),n,fptr[templhde-nurn, 0);
if((outfile = fopen(template~fileý_name,"wb+")) = NULL)

wait~message(0,7,"ERROR(6): data file open failed!",
"Location: find...emplate() routine in template.c");

perror(" ");exit(0);

fwrite(('void *)template,sjzeof(float),n,outfile);
fclose(outfile);farfree((void *)template);
for (i=beg..i;i<=end...;i++) fclose(fptr[i]);
return;

The following finds the best template amioung existing templates.
A list of template names are in an ASCII file: "template.lst".
The DWT algorithm is then used to determine which template is the
best for each word.

void find...bestjtemplates(k)

unsigned *warp(float*,unsigned,float*,unsikgned,float*,unsigned*);
void dpfunc(unsigned,unsigned*,unsigned*);
float *avebuf,*template,*westpat,*wayrped~buf;

121

float tcost,mintol-cost,tol-cost;
long filesize=0O,temp...flesize=0;
unsigned template-num=-0;
unsigned numwrite,numread,max...multnum,k,worc-dis;
ur~signed i,ji,iii~j,*map;
unsigned l,num_file_nanies=0O;
char template...file names[10] [151 ,filename[8 1] ,data~.jype[2];
label_struct labels[16];
FILE *fileptzr; /* File pointer *

strcpy(filename,"c:\\borlandc\\thesis\\isoword.lst tt);
if(end~word > 11) end..word = 11;
if ((fileptr = fopen(filenanie,"r")) -= NULL)

waitmessage(0,7,"ERROR(l): fopen of word.lst file failed! "

"Location: findjbest_templates() routine in TEMPLATE.C');
* - exit(0);

) ~/* Load word list ~
for (i=beg-..word;i<=end-..word;i++) fgets(word...uffer[i],2O,fileptr);
fclose(fileptr);
strcpy(filename,"c:\\borlandc\\thesis\\template.l'st'D;
if ((fileptr = fopen(filenaine,'r tt)) == NULL)

wait,..message(0,7,"ERROR(2): fopen of tempate.lst file failed! "

"Location: find_best~templates() routine in TE.MPLATE.C");
exit(0);

) ~/* Load template file names ~
numnJile..names =0;

/* Check to make sure the following does not add an extra number *

while(fscanf(fileptr,'%s",template...file..names[num ~fle_names]))! EOF)
num_file_nanies++;

fclose(fileptr);
strcpy(data-type,"p"); /* Do photo first *
do

for (i=beg...word;i<=end..yord;i++)

min_tol -cost = le+5;tolscost = 0;
for (ii=0O;ii<numjfile_names;ii++)
(1* Find mini. cost multiple word file to be DWT template *

build~path2(filename,drive,template...file-names[ii] ,datatype,i);
printfC'Reference file: %s\n",filename);
if ((fileptr -fopen(filename,"rb")) =NULL)

122

wait~message(O,7,"ERROR(3): fopen of template file failed! "

"Location: find...bestjtemplates() routine in TEMPLATE.C");
perror("");exit(O);

temp...filesize =filelength(fileno(fileptr));

temp..filesize 1=sizeof (float); /* Convert bytes to floats *
if ((template = farcalloc(tempjfilesize+l,sizeof(float))) =NULL)

printfC'ERROR(4): template buffer allocation failed !n");
printf("Location: find...esLtemplates() routine in template.c\n");
perror("");exit(O);

) I~/ Open & read file (template) for DTW *
numread=fread((void *)template,sizeof(floatl~tempJilesize,fileptr);
fcose(fileptr);
for(iii=-O;iii<num-file..narnes;iii++)

if (ill == (num...file, .names- 1)) break;
else iii++;

build~path2(filenaine,drive,template...filejianes[iii].,data-type,i);
if ((fileptr = fopen(filename,"rb")) == NULL)

wait~message(O,7,"ERROR(5)N: fopen of file failed!,
* "Location: findibesLtemplates() routine in TEMPLATE.C");

perror("");exit(O);

filesize =filelength(fileno(fileptr));

* .filesize 1=sizeof(float); /* Convert bytes to floats *
if ((test..pat =farcalloc(filesize,sizeof(float))) == NULL)

printfC'ERROR(6): tesLpat buffer allocation failedfRn");
printfC'Location: find...besLtemplates() routine in template.c\n");
perror(n");exit(O);

numread=fread((void *)test~pat,sizeof(float),filesize,fileptr);
if(data-type ==p'P)

max-.step = 2;
window...width =1;

else

max~step =2;
FwindoW...width =4;

123

map =warp(testpat,filesize- 1,templat~e,temp...filesize- 1,&tcost,&k);
tol-cost += tcost;
farfree((void *)mnap);
farfree((void *)te.stpat);fclose(fileptr);

muin -tol_ýcost = min(mintol~cost,tol...cost);
if(min...tol-cost =- tol-cost) tempiate...num =ii;

farfree((void *)template);tol cost = 0;

build~path2(filename,drive,ternplate file_names[template-num],datatype,i);
printf("Choosen template = %s\n",template-.file...names[template-num]);
if ((fileptr = fopen(filename,'rb")) == NULL)

wait~message(0,7,"ERROR(7): fopen of template file failed! "

"Location: find-bes~templates() routine in TEMPLATE.C");
perrorC' ");exit(0);

tempjfilesize = filelength(fileno(fileptr));
tempJilesize I= sizeof(float); P* Convert bytes to floats *
if ((template = farcalloc(temp ilesize+1,sizeof(f,.oat))) =NULL)

printfC'ERROR(8): template buffer allocation failed!\n");
printfC'Location: find-best~templatesO routine in template~cn");
perror("");exit(O);

numread=fread ((void *)template,sizeof(float),temp~filesize,fileptl);
fcoseffileptr);
build~path2(filename,drive,"besttemp" ,da~ta..type,i);
if ((fileptr =fopen(filenanie,"wb")) ==NULL)

wait..message(0,7,"ERROR(9): fopen of best template file failed!,
"Location: find_bes~templates() routine in TEMPLATE.C");
perror("");exit(0);

numwrite=fwrite ((void *)template,sizeof(flo-~t),temp resize,fileptr);
farfree((void *)template);fclose(fileptr); -i

if~aatp[l=W tcydt~yeT)
if(data...type[0i =='in') strcpy(datatype,"f");

while(data type[0] !-f);
return;

124

"Spchl.rec.c" Source Program

•,/* --

Program contains speech recognition algorithms.

Program: spch.rec.c
Programmer: Patrick T. Marshall
Date: 2/25/91

* •Organization: WRDC/AAWP-2,
WPAFB, OH 45433

Phone: (513) 255-2471

--
#include <bios.h>
#include <time.h>
#include <conio.h>
#include <io.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <dos.h>
-#include <math.h>
f#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
"#include <dir.h>
#include <string.h>
f#include "c:\borlandc\thesis\logical.h"
#include "c:\borlandc\thesis\plot.h"

extern unsigned long buf..size; /* Buffer size */
extern unsigned long numbytes; I* Totl number of bytes to record */
exter int filej.andle,window width,maxstep;
extern unsigned long tol mem_avail,buf.count;
extern char ordLbuffer[19][41]; /* Used to store word name strings */

- •extern char drive[MAXDRIVE],filename[MAXFILE],ext[? IAXEXT];
extern char dat.path[80],tmppath[80];
extern char completefile._name[MAXPATH],dir[MAXDIR];
extern char ir__flag[4],mic..flag[4],printflag[4];
exter int beg.word,end-.word,beg-multend-mult;
extern int numwords,beg..template..num,end_template-num;
extern float starttime,stoptime;

125

_ -- ... - - - - - - - - - - - -. - . . :-, .. ,, : . , ,,:

float *normalize(unsigned,float huge*,float *,unsigned*)
float huge *con'vert data(unsigned *,unsigned,charf],unsjgned long*)
get~jilejnfo(unsigned*,unsigned long*)
void wait-..Message (int, int, char*, c.har*);
void build-..Path (char*, char*, char*, int);
void build...path2 (char*, char*, c'.ar*, char*, int);

FILE *resultsptr; P* For storing recognition results *

The following conducts speech recognition in boths modes (isolated or
continous). ****** ***** ****************

void starLspeech-rec(logical sensor~fusion...flag)

void process...spch-rec(char[],char[],unsigned,unsigned,logical);
float *find~words(char[],unsigned*,char,unsigned);

unsigned ijii;
char filenanie[8 I] ,datajtype[1]
FILE *fileptr; P* File pointer for wo -d file "word.lst" *

system("del c:\\borlandc\\thesis\\phiojus.dat t');
strcpy(filenamne,"c:\\borlandc\\thesis\\results.dat");
if ((results...ptr = fopen(filename,"a")) = NULL)

wait message(O,7,"WARNING: fopen of results.dat file failed!,
"Location: speechjrec() routine in spch..rec.c.c");

strcpy(filenanie,"c:\\borlandc\\thesis\\word.lst");
strcpy(data...type,"p'); P* Do photo first *
if ((flleptr = fopen(filename,"r")) == NULL)

wait~message(O,7. IWANING: fopen of word.lst file failed! ",
"Location: speech-rec() routine in spchjrec.c.c");

for (i=Ojkl8;i++ý /* Load the word array & create the files. *

fgets(word_buffer[i] ,40,fileptr);

fclose(fileptr);
do P* Go through mic & photo *

if(sensor-fusion_flag =TRUE)

126

(fprintf(results...Ptr,I********** ** * SENSOR FUSION RECOGNITION RESULTS

printf("~************* SENSOR FUSION RECOGNITION RESULTS

else if(datajtype[O] =='p')

fpit4 eut HT EONTO EUT

fprintf(reut" t,*********.****** PHOTO RECOGNITION RESULTS

else

fpint~eut~t,***** *MCOHN EONTO EUT

fprintf(reut...t,****** ******* MICROPHONE RECOGNITION RESULTS

for(i=beg-word;i<=efld..word~i++) /* Go through words *

bulild.-.path(complete..fileflame,drive,dat-path~i); /* Creating word file *
if(sensorjusionjflag == TRUE)

if(end....ord <= 11) sensor-fusion....segmentor(complete fl e-name,Ti);
else sensorjfusion...segmefltor(complete~file-flafle,c');

for(ii=begjnult;ii<=end~flult~ii++) /* Go through word multiples *

printf("File: %s \n",complete..file_..nmne);
/* Find beg & end of words *

fprintf(results-..ptr,"File: %s \n",complete...file-name);
/* Find beg & end of words *

process~spch~rec(complete-fileý-ame,data-type,i,ii,sensor -fusion-flag);

printfC'\n");
f~printf(results...ptr,"\n");
if(data-type[O] ='in') strcpy(data...type,"f"); 1* (f)inished *
else strcpy(data..type,"m"); /* Do (m)ic next *
if(sensorjfusion..flag ==TRUE) strcpy(data-type,"f"); 1* (f)inished *

while(datatype[O] Wf-
printf("Done with this run!\n");

127

fclose(results-..ptr);
return;

The following is called froim speech-ac() routine to process the speech
and recognize words. The word and word multiple are already processed by
speech...rec() as "filename". This routine will then find the number of
worcL in filename's recorded speech anid compare it to word templates.

Inputs:
filename - complete file name (i.e. contains complete path & drive).
mult~num - word multiple number
data,.type - Type of data working with ("p"f - photo or "in" for mic.)

Outputs:
none

Global:
complete file_name - filename to be processed (includes path & diive)
start~time & stop...time - used in convert..data()

void process...spch. -ec(char filename[],charr datajtypefl,unsigned word_num,
unsigned mult-num,logical sensorý-fusionjfiag)

unsigned *warp(float*,unsigned,float*,unsigned,float*,unsjgned*);
void dpfunc(unsigned,unsigned*,unsigned*);
float *Process .. ho-data(char[] ,float,float,unsigned,uns-igned*);
float *process...mic.Adata(char[] ,float,float~unsigned,unsigned*);
float mi _distance(float[],float[I,unsigned);
float *linear _warp(float[] ,unsigne,fla[0usge)
void plot2(float huge*,fi~oat huge*,unsigned,int);

flat*fnwords(char[],up~jgned*,char,unsiogned);

float *word-buf~min- co5t=-5COO,*worcLtimes,pho...cost;
float tcost~max..y,max...yl;
float *template buf~beg-timd,,end time;
unsigned long temp~file...sizeý
unsigned max-mult...num,k,m xýl,i,ii,iii,*map,n=-O,recognized...word;
unsigned num words,_ound,p ioto...od
char tmp....ilejiame(50],file[3 iI="",pltpos[2];
FILE *template-.l.e-ptr,*timep0,*puopt1.;

strcpy(complete...file~name,filenamc);

128

get~rile -nfo(&Max(..niultflum ,&numbytes);
1* where: max..mult-numn = number of words and/or sentences & ~

numbytes = window size used to record data *I
close(f ile...handle); /* "rile-.handle" is a global variable used by *

I* get-file-info to open files and leave open *1
start-.time =0;stop.Jtime = ntimb ytes/22.0/2500.0;
/* Create word file that will store processed words found in cont. sig. *
if (data...type[0I =='pS) strcpy(&rile[0],"c:\\borlandc\\thesis\\Photemp.dat");
else strcpy(&rile[O1,"c:\\borlandc\\thesis\\mictemp.dat');
if(sensor..fusion..flag == TRUE)

build..path(file,drive,"\\borlandc\\thesis\\ificwrdttmi,mult-num),
if((timeptr = fopen(file,"rb")) = NULL)

(~/* Pointer to word endpoint time rile *

printf("ERROR(l b): data file open failed!\n");
printf("Location: process...spch-.rec() routine in spch...rec.c\n");
perror(" ");exit(O);

fread(&num ...words5 found,sizeof(unsigned), IL,timeptr);
if((wordjimes = farcalloc(4*num-..wordsj'found,sizeof(float))) ==NULL)

printf("ERROR(2): template buffer allocation failed!\n");
printfC'Location: process...spchjec() routine in spch-rec.c\n");
perror("");exit(0)*,

for(i=0O;i<4*num...wordsiould~i+=4) /* Read word time bondaries ~

fread(&word...times[il,sizeof(float), IL,timeptr); 1* beg. of word *
fread(&word...timesfi+31,sizeof(float), I L,timeptr); /* end of word *

fclose(timeptr)*

else

word-.times = find..words(complete...filejnamTe,&num..words5.found,dataý-type[O],
mult~num);

if(end_ýword < 12)

wordjtimes[31 = word jimes(4*(num_..words...found- 1)+3];
num-wordsjfound = 1;
if(word..times[3] <= 0.0)

word..times[O] = start..tirae;
word-times[3] = stop-time;

129

for(i=0;i<4*num-words-found;i+--4) /* Now do speech recognition *

again: I* For processing mic. woid for sensor fusion *
beg...time = word-timesili] ;endjtime = word-tinies[i+3];
if (data..type[O] =='p')

word~buf = process...pho..data(f-ilename,beg-timie,end-time,multrlum,&n);
else word buf = process .mic..data(filename,beg-time,endjtime,mufl-um,&l);
word_ýbuf =norm alize(n,word...buf,&max-.y 1 ,&max...n);
min_cost =5000;

for(ii=begjtemplate...num ;ii<=endjtemplate-num ;ii++)
(~/* Loop for templates in lib. *

if (data...type[0] =--'p') 1* Create photo template file ~
build..path2(tmp...file_ýame,drive,tmp...path,"p",ii);

else I* Create mic template file *
'7 ~~build...path2(tmnp-ile...name,drive,tmp...path,"m ",ii);

if ((template file...t = oe~m.file...name,'rb")) ==NULL)
{pr=fpntp

printf("ERROR(3): template file does not exist!\n");
printf("Location: process-.spch...rec() routine in spch...rec.c\n");
perrorC' ");exit(0);

I I~/ G-t file size ~
temp...file...size =filelength(fileno(template....ile...ptr));

temp...file...size =4; /* Convert file size to float *
rewind(template..file...ptr); /* Move file pointer to beg. of file *
if((template...buf = farcalloc(temp...file-...size+1,sizeof(float))) =NULL)

printf("ERROR(4): template buffer allocation failed!\n');
printf("Location: process,..spch...rec() routine in spch...rec.c\n');
perror("");exit(0);

fread((void *)template~buf~sizeof(float),temp-file-size,template-file-ptr);
if(data...type[0] = 'p')\

max...step = 2;
window-.width = 2;

else

max...step = 2;
window_width = 4;

map =warp(wordjuf~n- 1 ,template...buf~temp_file_size-i ,&tcost,&k);
if(ii =beg...template...num) min-..cost =tcost;

130

min-cost =min(min-cost,tcost);

if(minS.ost -= tcost) recognized....ord =ii;

fclose(template...file...ptr);
farfree((void *)map)-,
farfree((void *)templatebuO);

farfree((void *)word...but);
if(sensorjusion...lag == TRUE)

if(datajtype[0] == Ip')

photo-..word =recognized-..word;
pho.Sos, = _lincost;
data-jype[0] =W
goto again;

if((mincýost > 0. 17) && (pho-.cost < 0.005)) /* Use photo word *

recognized-word = photo-..word;
printf('Picked photo word!! !\n");
fprintftresults&.pt-, "Picked photo word!!f\n');

if((minS.ost > 0.6) 11 (pho..cost < 0.0001)) /* Use photo word *

recognized...word = photo...word;
printfC'Picked photo word!!!\n");
fprintftresults...ptr,"Picked photo word!! !\n");

data....ype[0] = 'p; 1* Reset to photo word *

/ ~printf("From %f sec to %f sec
J, %sfn",beg...time,end-time,word buffer[recognized-yord]);

fprintf(results...ptr,"Time = %f sec to %f sec: Wo 'rd = %s",beg-.time,end-time,
word...bufferfrecognized....ord]);

farfree((void *)word-tmes);
return;

131

"DMA.c" Source Program

1* dma~c ->Contains subroutines used for dma data acquisition

* The calling routine must declare the variables in the "extern" list
* below, and the rcsetirq() function. Communication from the main
* program to the subroutines is mostly through these global variables.

ThIe callina routine must give values to dma chan, dmajrq and
* buf..size, then call alloc...dma..bufo, dma~setupo, and star~dmao.
* As each dma buffer fills up, the interupt service routine calls
* start..dma() on the next buffer. The calling routine can wait for
* bufjndex to change, then process data pointed to by curr..buf. Cleanup
* is done by dm afinish (,which is called automatically when the program
* exits.

* Compiler: Borland's Turbo C
* Set /Gs switch to remove stack probes (a necessity for
* any function called at interrupt state!)

* Written by Tom Nolan - 11/3/89
* Modified by Pat Marshall - 9/17/90

#icud1 bish

#include <bios.h>

#finclude <conio.h>
#inc: .ide <dos.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <io.h>
#include 4cntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <c:\borlandc\thesis\logical.h>
#pragma check...stack(off)

#define DMAO-BASE OxOO /* Address of dma controller (chan 0-3) *
#define DMAI_BASE OxCO 1* Address of dma controller (chan 4-7) *

1* Interrupt Contoller Definitions *

132

#define INTAOO 0x20 /* Base address of int ctrlr /
#define INTAO I 0x21 /* Address of int ctrlr 2nd reg */
#define EOI Ox20 i* Code for non-specific end-of-int *

/* Macros for extracting bytes from 20-bit addresses */
#define LSB(x) *((unsigned char *) &X)
#define MSB(x) *(((unsigned char *)&x) +1)
#define PAGE(x) *(((unsigned char *) &x) +2)

typedef struct

!unsigned char far *p; /* Pointers to buffers */

unsigned long a; /* Address of buffer */
unsigned s; /* Size of buffer */
. buf-struc;

extern bufstruc dmabuffers[]; /* DMA buffers *1
"extern unsigned long numbytes;
extern char far *curr-buf; /* Pointer to current buffer */
extern unsigned long buf._size; /* Buffer size */
extern int buf_index; /* Index of current buffer */
extern int dma-irq; /* Hardware int request line *f
extern int dmachan; /* Hardware DMA channel number */
extern int file_handle; /* File handle */
extern int lostbuffers; /* Write errors */
extern int irqflag;
extern int numbuffers;
extern int bufs-filled;
extern unsigned statreg,seg;
extern unsigned long max;

/* Variables - placed in static storage to avoie, excessive stack
* usage in interrupt routines */

static union REGS r; P General registers
static struct SREGS s; /* Segment registers */
static int sel; /* DMA channel select bits */
static int basereg; /* DMA controller base address register */
static int cntreg; /* DMA controller count register */
static int maskreg; /* DMA controller mask register */
static int modereg; /* DMA controller mode register *1
static int pagereg; /* DMA page address register *1
static int page_tbl(I[/* Table of page register addresses *1

I 0x87, 0x83, 0x8 1, 0x82, /* for dma channels 0, 1, 2, 3, *1
Ox8f, Ox8b, 0x89, Ox8a P; /* 4, 5, 6, 6, 7, *I

133

char far *dos._critaddr; /* Address of DOS critical section flag */

static void /* Space for saved int vector contents */
(interrupt far *dmaintsave) 0;

int allocdmabuf(void); P* Allocate dma buffers */
void intr setup(void); /* Set up interrupt operation */
void dma-setup(void); /* Set up dma operation */
void dmafinish(void);
void interrupt far dma.isr(void);
void start dma(char far *,unsigned); /* Start a dma operation */

void initbrd(void); /* Initialize A/D board */
void onbrd(void); /* Turn A/D board on */

/*---
int alloc_dma_buf0 P* Allocate dma buffers */

"unsigned buf; P* Temp variable for various paragraph */
/* addresses */

unsigned size; /* Buffer size in paragraphs */
unsigned numpais,i;

PI This routine allocates buffers that can be filled by dma.
* The buffers are guaranteed to be aligned so that they do not cross
* physical page boundaries. Before calling this routine, set the value
* of numbytes to the required total number of bytes to be transfered.
* Note that the maximum buffer size is 64K bytes. Also, the byte count
* is converted to paragraphs, which are the units the DOS memory
* allocation functions work with.
* Buffer information:
* dmabuffers(i).p = pointer to ith buffer's 20-bit physical address
*•. dmabuffers(i).a = absolute address of ith buffer
• dma_buffers(i).s = size of ith buffer
• The return is zero if the allocation succeded, non-zero (an MS-DOS
* error code) otherwise.
*/

max=allocinem(Oxffff, &seg); /* Get max paragraphs from dos */
if(allocmem(max, &seg) != -1) /* Now grab it all */
(
printf("Memory alloction failed!\n");
return 1;
)
buf = seg;

134

if ((numbytes »> 4) > max) numbytes =max «<4;
numpars = numbytes >> 4; 1* Convert bytes to paragraphs ~
i = O;numbytes = 0;
while(rumpars>8j

if(((but + numpars - 1) & OxfOOO) != (buf & WONfO))
4 ~/* If buffer crossesphys page boundaiy *

dma...buffers[i].p = (char far *) 1* Convert buffer segment ~
((long) buf «< 16); /*..to far pointer for return *

dma_buffers[i].a = (unsigned long) buf «<4;
buf = (buf & OxfOOO) + 1* .. adjust to next *

Ox 1000; /* phys page *

else

dmaj..uffers[i].p =(char far *) /* Convert buffer segment *
((long) buf «< 16); /*..to far pointer for return ~

dma~buffers[i].a.= (unsigned long) buf «< 4;
buf +=- numpars; I'* Initial attempt at next buffer seg. *

dma..buffers[i].s = (unsigned) /* Convert buffer size to bytes *
(buf «< 4) - dma~buffers~i].a-16;

numpars -= dma...buffers[i].s >> 4;

numbytes += dma...buffers[i].s;
i++

numbuffers i;
1 = numbuffers- 1;
size = ((dma...buffers[i].a+dma~buffers[i].s) >> 4) - seg;

/* Compute actual size needed *
if (setblock(seg,size) !-1) /* return error if not enough *

printf("Setblock memory resizing failed !n");
return 0;

/*--

void intr...setup() /* Set up interrupt operation *

/* Before calling this routine set the following variable:
* dmaj-.rq =interupt request number 0-7 (hardware dependent)

int intmsk;

135

r.h.ah = 0x34; /* DOS "get critical flag addr" function */
intdosx(&r,&r,&s);
dos_crit_addr = (char far *) /* Save its address so it can be tested */

(((long) s.es << 16) I r.x.bx); /* ... as a far pointer */
if(dma.irq < 8) /* Save current contents of dma int vec */
(
dmaint_save = getvect(dma-irq + 8); /* For IRQ's 0 - 7 */
setvect(dmajirq+8, dmaisr); /* Set up new int service routine */

else

dmaint_save = getvect(dma_irq + 104); /* For IRQ's 8 - 15 (AT only) */
setvect(dmairq+104, dma-isr); /* Set up new int seivice routine */

intmsk = inp(INTAO 1); /* Get current interrupt enable mask */
"intmsk &= -(1 << dmairq); /* Clear mask bit for dma interrupt */
outp(INTA01, intmrsk); /* Output new mask, enabling interupt */

1*--- ------------------ *
void dmasetupO /* Set up dma operation */

/* Before calling this routine set the following variable:
* admachan = channel number (hardware dependent)

• *1

sel = dma..chan & 3; /* Isolate channel select bits */
pagereg = pagejtbl[dmachan]; /* Locate corresponding page reg */
if(dma chan < 4) /* Setup depends on chan number */
I
basereg = DMAOBASE + sel * 2; /* Standard dma controller */
cntreg = basereg + 1; /* Note that this controller */
maskreg = DMAOBASE + 10, /* is addressed on "byte" */
modereg = DMA0_BASE +- 11; /* boundaries */
statreg = DMA0_BASE + 8;

}
else

basereg = DMAIBASE + sel * 4; /* Alternate dma controller (AT only) */
cntreg = basereg + 2; /* Note that this controller */
maskreg = DMAI1BASE + 20; /* is addressed on "word" */
modereg = DMAI_BASE + 22; /* boundaries */
statreg = DMAI_BASE + 16;

136

I Y
.", "

void dmaifinishO

int intmsk;

freemem(seg); /* Free memory */
iniLbrdo; /* Initialize A/D board */
intmsk = inp(INTA 01); /* Get current interupt enable mask */
intmsk 1= (1 << dmajrq); /* Set mask bit for dma interrupt */
outp(INTAO1, intmsk); /* Output new mask, disabling interupt *1
setvect(dma_irq+8, dmainLsave); /* Restore old vector contents */

-*-------------- - - - --- -*/
void interrupt far dmaisro

/* This routine is entered upon completion of a dma operation.
* At this point the current dmabuffer is full and we can write it to
* disk. We set the "available data" pointer to point to the just-
* filled buffer, and start the next dma operation on the other
* buffer. At the conclusion of operations, we output a non-specific
• end-of-interrupt to the interupt controller.

• The PC bus provides no mechanism for "unlaching" an interrupt request
* once it has been serviced. In order to enable the next interrupt,
*the hardware must be designed so that the request can be reset. For
* example, a write to ar i/o port. The external routine resetirq0
* must be coded to perform this routine.

* Declaring this routine as type 'interupt', ensures that all registers
* are saved, the C data segment is set correctly, and that the routine
* returns with an IRET instruction. Further interrupts are disabled
* during the execution of this routine.
*1

currjbuf = dmabuffers[bufindex-l].p; /* Post just-filled buffer addreses *1
buf_index += 1; /* Increment buffer index */
if (bufindex > numbuffers)

bufs_filled = 1;
irqjflag = 2;
iniLbrdO; /* Initialize A/D board *1
outp(INTAOO, EOI); /* Signal end of interupt */
return;

137

"7..* *o,

dma setupo; /* Set up next dma operation */
start.dma(dma.buffers[buf.index] .p,dma.buffers[buf.indexl.s);

/* Start dma on next buffer */
irq..flag = 1;
dma~chan A= 2; /* Toggle DMA channel */
inp(0x302); /* Reset brd. - sets U1A (-Y2) on A/D board */
outp(INTAOO, EOI); /* Signal end of interupt */

}
P --...................-*-
So•zd start_dma(buf,count) /* Start a dma operation */
char far *buf; /* Address of buffer to be filled */
unsigned count; /* Size of buffer in bytes */

S~{
int page;
unsigned long addr = /* 20-bit address of dma buffer */

"FP._OFF(buf) + ((long) FP._SEG(buf)<< 4);

/* This routine starts a dma operation. It needs to know:
* - the address where the dma buffer starts;
* - the number of bytes to tranfer
* The dma buffer address is supplied in segmented, far-pointer
* form (as returned by alloctdmabufO). In this routine it is
* converted to a 20-bit address by combining the segment and offset.
* The upper four bits are known as the page number, and are handled
* separately from the lower 16 bits. The transfer count is
* decremented by 1 because the dma controller reaches terminal count
* when the count rolls over from 0000 to ffff.

* The dma transfer stops when the channel reaches terminal count.
* The terminal count signal is turned around in the interface
* hardware to reproduce an interrupt when dma is complete.

* Channels 4-7 are on a separate dma controller, available on
* the PC-AT only. They perform 16-bit transfers instead of 8-bit
* transfers, and they are addressed in words instead of bytes.
* This routine handles the addressing requirements based on the
* channel number.
,

* dma...setup0 needs to be called before startdma0 in ordet to
* assign values to maskreg, modereg, etc.
*1

page = PAGE(addr); /* Extract upper bits of address */
if(dma-chan >= 4) /* For word-orientated channels: */

138

- -

I4

count »>= 1; 1P convert count to words *
addr »>= 1; P~ convert address to words ~
page &= Ox7e; P* address bit 16 is now in 'addr' *

count--; P* Compute count- I (xfr stops at ffff) *
outp(maskrueg, sel I 0x04); P* Set mask bit to disable dma *
outp(modereg, sel I 0x44); P~ xfr mode (sngl, inc, noinit, write) *
outp(basereg, LSB(addr)); 1* 0/p base address LSB ~
outp(basereg, MSB(addr)); 1* 0/p base address MSB *
outp(pagereg, page); P* Oip page number to page register *
outp(cntreg, LSB (count)); P* O/p count LSB *
outp(cntreg, MSB(count)); P~ 0/p count MSB *
inp(statrea); /P Clear DMA T/C information register *
outp(maskreg, sel); /P Clear mask bit, enabling dma *

Is--
void init..brd() P Initialize AID board *

inp(0x300); /P Address to set UIA (-YO) on A/D board S
delay(50); P~ Wait for 50 msec ~
inp(0x300); P~ Address to set UlIA (-YO) on A/D board *
delay(50); P~ Wait for 50 nisec ~

"void on...brd) /P Turn A/D board on ~

inp(0x30 1); P5 Turn board on*/I

139

"Plot.c" Source Program

. 1*

GENERIC X-Y PLOTTING ROUTINES

Plot description: Plots data on user's screen. Requires running "st.up.pit"
to generate graphics window, etc. Can use this routine to continue
plotting previous plots.

Program inputs to plot:
float x[10] y[10] 1-D arrays for x & y data
int numpts; Number of data points to plot
int last plot Graphics flag used to shut down graphics

after when finished (0 - leave graphics
on, 1 - shut graphics off)

Set-up-plot description: Creates 1, 2, or 4 plots simmtaneously on the user's
screen. Requires a file that contains axis labeling
information. File format:

1. Graph title
2. y-axis label
3. x-axis label
5. Number of x-axis increments
6. x-axis scaling factor
7. Number of y-axis increments
8. y-axis scaling factor

Program inputs tp set-up-plot:
int max..x,min_.x,max..y,min_.y
int numpts" Number of data points
char filel[25]: Data file name

' Vchar file2[25]: Axis labeling file name
char pltpos[3]: Plot position/size: "ul", "ur", "l1",

& "lr" are fo, 1/4 size and "upper",
"lower", "right", or "left" positions.
"u" or "I" are for 1/2 size and "upper" or "lower"
positions.
"c" is for full size and center position.

int deloldplt: Graphics flag used to keep current plots
(0 - erase old plots, 1 - keep old plots)

Programmer: Patrick T. Marshall

140

"+" " t"•- /
' .,I -]-: _ A,. - - . - 7 ! .:/

,-r('i . •:" .. ./

organization: WRDCIAAWP-2
WPAFB, OH 45433-6543

Date: 15 Nov 90
Language: Turbo C ver. 2.0

#include <c:\borlandc\thesis\plot~h>

unsigned linestyle = 4;
struct linesettingstype oldisetting;
unsigned color[16] (2,3,4,5,6,7,8,9,10,1 1,12,13,14,15);
FILE *fptr; /* File pointer *

I********Programns begin
label~plot(1abelstruct labels[16] ,int numlabels,char pltp~osfl)

int i,maxjlengt-O,1ength-O,oldcolor,x~offset=-O,y~offset-O;
int height=-O;
struct viewporttype cur-..view;

oldcolor =getcoloro;
getviewsettings(&cur~view);
getlinesettings(&oldlsettiflg);

- - settextstyle(SMALLFONT,HiORIZ...DIR,5);
for(i=0.;iknumlabels;i++)

length = textwidth(labels[ii.1).
height = textheight(labelslli].1);
/* Add on for line key */
max.jength = max(maxjength,lenoth);,

X..offset = cur.view.right-cur...yiew.left-maxjLeflgth;
y...offset = 5;
for(i=-O;i~mumlabels;i++)

outtextxy(x~offset,y~offset+i*heigi~t,labels[i].1);
/* Draw line key *
if ((labels[i].t = "1") 11 (labels[i].t =L)

setcolor(labels[i].lt);
setlinestyle(USERBITJJINE,linestyle,NORM-..WIDTi);
line(.75*maxwidth+maxjength+3-x...offset, 13*i+1O,.75*maxwidth+

maxjcngth+9, 13*i+ 10);

141

setlinestyle(oldlsetting.linestyle,old!settiflg.upattem,oldlsettiflg.thickPiess)
setcolor(oldcolor);
return;

prinLplot()

int errorcode,h,v;

maxheight =getmaxyo;

maxwidth =getmaxxO;

setviewport(O,O,maxwidth,maxheight, 1);
InitGraf(&h,&v);
printimage(O,O,h,v);
errorcode = graphresulto;
if (errorcode != grOk) 1* Checking for graphics error ~

printf("Graphics error: %s\n' ,grapherrorrnsg(errorcode));
printfC'Location: print~plot() routine in plot3.c~ri");
exit(1);

return 0;

plot(float huge *y,float xjinc float x-beg,unsigned long numpts,
int line-type)

unsigned long i,errorcode;
int Xl ,Y I,X2,Y2,oldcolor;

if (linejtype > 15) linejtype = 15;
if (llne...type < 0) line...type = 0;
oldcolor =getcoloro;
YlI = m..y* yIO] + b..y;
XlI= m_x *xjbeg +b..x;
getlinesettings(&oldlsettingf,);
setcolor(color[linejtype]);
for (i= I;k~numpts;i+-i)

Y2 = my* y[i] + b...y;
X2 = rnx * (j*x inc+x_beg) + b~x;
line(Xl1,Y I,X2,Y2);

142

XI=X2;Y1=Y2;,

errorcode = graphresulto;
if (errorcode != grOk) /* Checking for graphics error *

closegrapho;
printf("Graphics error: %s\n",grapherrormsg(errorcode));
printf("Location: plot() routine in plot3.c\n");
exit(l);

setlinestyle(oldlsetti ng.li nestyle,oldlsetting. upattern,oldlsetting. thickness);
setcolor(oldcolor);
return;

plot2(float xf],float yfl,unsigned numpts,int line..color)

unsigned long int i,errorcode;l
nt Xl ,Y 1,X2,Y2,oldcolor;

if (line-color > 13) 1ine._coloý 13;
if (line-,color < 0) line~color;F 0;
oldcolor = getcoloro;
getlinesettings(&oldlsetting);'
setcolor(color[linescolor]);
for (i=0;ienumpts-1;i++)

X1I= m.x x~i + b..x;
Y2 = m-y *yfii-1] + by
X2 = rn..x *xfi+lJ + b...x;
line(X I,Y 1,X2,Y2);,

errorcode = graphresulto;
if (errorcode != grOk) /* Checking for graphics error *

closegrapho;
printf("Graphics error: %s\n",grapherrormsg(errorcode));
printf("ILocation: plot2O) routine in plot3.c\n");
exit(1);

setlinestyle (oldlsctting. I incstyle,oldlsetting. upattern,oldlsetting. thickness);
setcolor(oldcolor);
return;

143

seLup...plt(file,max...x,min...x,maxJy,min-y,pltpos)
float max...x,min-.x,max...y,min...y;
char file[I ,pltpos[];

void find-precision(float,int*);
float rnd(float,logical,int);
double fraction,integer;
float x-value,y...value,prev...s..alue;
float y~scale,x....scale,x..step...value,y...step value;
mnt errorcode; 1* Graphics error code *
int x,y,prev-y,x..steps,y...steps,step-x,step.. bseline;
mnt plot-height,plot-width;
mnt Xl ,X2,Yl1,Y2,precision;
mnt y-fudge,x-fudgc,y_.border=20,x..border=60,max len:
int significant-digits;
char buffer[8 I];
int length,n;
size_t len;
logical sign....hange = FALSE;
struct viewporttype cur._view;

setbkcolor(1);
maxheight =getmaxyo;

maxwidth =getrnaxxo;

if ((fptr = fopen(file,"r')) ==NULL)

perror("fopen #1 failed\n");
printfQ'Location: set~up plt() roptine in plot3.c\n");
exit(l);

if (stricmp(pltpos,"" 111 0)

plot~width =maxwidthl2;

ploLheight =maxheightl2;

Yl = 0;
Xl = 0;
Y2 = maxheightl2;
X2 = maxwidthl2;
significant-digits = 3;

if (stricmp(pltpos,itur") = 0)

ploLwidth =maxwidthl2-2;

144

plot~height =maxheightl2;

Y1 =0;
XI = maxwidthl2;
Y2 = maxheightl2;
X2 = maxwidth-2;
significant-digits 3;

if (stricmp(pltpos,"l t)= 0)

plotwidth =maxwidthl2;

plotbeight =maxheighti2;

ylI = maxheightl2;
XI = 0;
Y2 = maxheight;
X2 = maxwidthl2;
signiificant-digits = 3;

*if (stricmp(pltpos,"lf") ==0)

plot width =maxwidthl2-2;

plotheight =maxheight/2;

ylI = maxheightl2;
X I = maxwidthl2;
Y2 = maxheight;
X2 = maxwidth-2;
significant-..digits 3;

if (stricmp(pltpOS,"U") ==0)

plot~width =maxwidth-2.5*xjborder;

plotheight =maxheight/2;

Yl =0;
XlI = x...border;
Y2 = maxheight/2;
X2 = maxwidth-l.5*x~border;
significanLdigaits = 5;

if (stricmp(pltpos,"l') == 0)

plot width = maxwidth-2.5*Xjborder;
plotbeight = maxheightl2;
ylI = maxheightl2;
Xl = x..border;
Y2 = maxheight;
X2 = maxwidth-x_border;

145

significant-digit-s =5;

if (stricmp(pltpOS",C") == 0)

ploL9.'idth =maxwidth-2;

plot~height =maxheight;

Yl =0;
XI = 0;
Y2 = maxheight;
X2 = maxwidth-2;
significanitdigits = 5;

setviewport(X I ,Y 1,X2,Y2, 1);

/* Graph title */

settextstyle(SMALL ýFONT,HORIZJDIR,5);
fgets(buffer,80o,fptr);fgets(buffer,

8 0,fptr);
length = textwidth(buffer);
outtextxy(plot-widthI2-lengthI2,5,buffer);

/* Y-axis label */

settextstyle(SMALL-FONT,VERL-DIR,4);
fgets(buffer,80,fptr) ;fgets(buffer,80,fptr);
length = textwidth(buffer);
outxx(~l~egt/-egh2bfe)

1* X-axis, label *

settextstyle(SMALL, FONT,HORIZDIR,4);
fgets(buffer,80,fptr);fgets(buffer,

8 0,fptr);

length = textwidth(huffer);
outxx~ltwdh2-egWl~egt 15,buffer);

fgets(buffer,8O,fptr);fscanff(fptr, "%d\n",&x...steps);

fgets(buffer,80,fptr);fscaff(fptr, "%tAn t ,&x~sca~e);

fraction = modf((double)min_..x,&integer),
if(fabs(integer) > 1) min~x = integer;
x...step..y.alue = ((double)((max__(-mif..x)/((double) x..steps)*x...scale));

find-precision(fabs(x~step value),&preclslol);

if(fabs(min...x) != ma~x_..x) x..step..yalue = md(x~step~value,UP,precision);
x...alue = rnd(min..x*x-...scale,DOWN,precision);
step...x = (rilotLwidth- 1.5*x._.border)/((double) x..,steps);

x..fudae = plot_ýwjdth-1.5*x__3order-x_*steps*step~
x = x-border;
f'gets(buffer,80,fptr);fscaff(fptr, "'%d\n",&y...steps);
fgctsý(buffer,80,fptr);fscaff(fptr, "%t\n",&y~scale);
y...step value = ((double) ((max..y-min..S)/y-steps*y-xale));
find precis' on(fabs(y..step._value),&precision);
if(fabs(min..y) _=mx..y) y... _ve..alue = rd(y step_y'alue,UP,precision);

146

y..yalue = rd(max..s*y...scale,UP,precision);
step...y = (plot-height-2*y...border)/((double) y-.steps);
y-fudge = plot-height-2*y...border-y...steps*step...y;
y = y...border;
X2 = Xl; /* Modifying for center rectangle *

Xl += X;
for (n = O;n < xsteps+l;n++) 1* Creating and labeling x axis tick marks ~

if~fabs(x..yalue) < 1.Oe-04) x..value = 0;
line(x,plot~height-y-..border-2-y-judge,x,plot-height-y...border+2-yjfudge);
gcvt(x~value,significant...digits,buffer);
len = strlea(buffer);
ifflen>l1)

if (buffer[0I == -') len = 3len;
else len = 2*len;

outtextxy(x-lIen,plot-height-y.-.border-yjfudge+5,buffer);

x_value = x..yalue + x...step..yalue;

x -= step...x;
X2 +=- x; I* For center rectangle *

plot-width= X2 - XlI;
max_x = x_ývalue - x_..step...value;
significant..digits = 4;
max-len = 0;
for (n = 0;n < y-.steps+ 1;n++) /* Find average y buf size in chars *

if(fabs(y...value) < l.Oe-04) y...value = 0;
gcvt(y...yalute,significanLdigits,buffer);
len = strlen(buffer);
maxjlen = max(maxjen,len);
y = y + step..y;
y...value = y...value - y-step...value;

y = plotjieight - y...border - yj'udge;
prev4y= y;
y-..value = rnd(min...y*y-...scale,DOWN,precision);
prev...y.-.value = y-.yalue;
Y2 = Y 1; /* Modifying for center rectangle*
Y2 += y;
for (n = y~steps+l;n > 0;n--) f* Creating and labeling y axis tic' marks *

if(fabs(y..yalue) < 1 .Oe-04) y..yalue =0;

147

line(x...border-2,y,x...border+2,y);
gcvt(y...value,significant..digits,buffer);
len = strlen(buffer);
outtextxy(xjorder-20-2*(len+maxjen),y-5,buffer);
y =y -step...y;
y..yalue = y...value + y...step...value;
if ((y..yalue < 0.0) && ((y...value+stepjy) >= 0.0))

baseline = -prev...y...value*(y-prev..y)/(y~value-prev....yvalue)+prev...y;
signschange = TRUE;

prev...y...alue = y..yalue;
prev.~y = y;

y += step..y;
Y1 += Y; /* For center rectangle *
plot-height = Y2 - YlI;
max-..y = y..yalue - y...step.: value;
baseline = baseline - yiborde~;
setviewport(X 1 ,Y!1,X2,Y2, 1);
clearviewporto;
rectangle(0,0,ploLwidth,plot..height);
setlinestyle(DASHED.LINE,0,NQRMWIDTH);
if (sign...change == TRUE) line(0,baseline,plot -width,baseline);
setlinestyle(SOLID._.LINE,0,NORM....WIDTH);
settextstyle(SMALL._FONT,HORIZ...DIR,3);

1* Graphical slope and offset conversion factors *

getviewsettings(&cur..yiew);
errorcode = graphresulto;
if (errorcode != grOk) 1* Checking for graphics error *

closegrapho;
printf("Graphics error: %s\n",grapherrornisg(errorcode));
printf("Location: set~up...plt() routine in plot3.c\n");
exit(1);

m_x = (cur...view.right-cur..yiew.left)/(max..x-min...x);
=- (cur..yiew.right-cur-view.left) - m_ýx*max..x;
=~ -(cur...view.bottom-cur _view.top)/(max-.y-min...y);

bj= 0-m-.y * max...y;
fclose(fptr); /* The following are used for "switch-windowso" *
if (stricmp(pltpos,"c') =0)

c[0] = X I;c[] I Y I;c[2] = X2;c[3] = Y2;
cm-x =m...x;cm4 = m...y,cb-x =b...x;cb...y = by

148

if (sign....hange =TRUE) cbaseline =baseline;

else c...baseline = 1;

if (stricmp(pltpos,"u") ==0)

u(0] = Xl;u[Ill = Yl;u[2] = X2;u[3] =Y2;

urn*_x = tn_x;um...y = rn4,ub...x = b_..x;ub2y =-

if (sign - hange ==TRUE) u~baseline = baseline;
else uj~aseline = 1;

if (stricmp(pltpOS",l") == 0)

1101 = Xl;l[l] = Y;1;[2] = X2;1[3] =Y2;
irn_x = m_x;lm..y = m...y,lb...x = b...x;1b4y =-

if (sign-.change == TRUE) l-baseline = baseline;
else Ibaseline = -1;

if (stricrnp(pltpos,four') == 0)

ur[0] = X 1;ur[] I YlI;ur[2] = X2;ur[3] =Y2;

urrn x = mnx;urln...y = rn..y,urb-.x = b.ýx;urb-y =-y

if (sign-.chanlge == TRUE) urjbaseline =baseline;

else ur...baseline = -1;

if (stricinp(pltpos."ul") == 0)

ul[0] = XlI;ul[I Y 1;ul[2] =X2;ul[3] =Y2;

ulm..x = rn.X;ulrn..y = mn~,ulb.j = b..x;ulb~y =b~y;

if (sign...chaflge =TRUE) ul-baseline =baseline;

else ul_baseline = 1;

if (stricmp(pltpoS,'."ll) 0)

11101 = X;11[l] = YNIM[2 = X2;11[3] Y2;
ll..x=m...x;llm...y = m..y,llb-x = b~x;llb..y =b~y;

if (signshange =TRUE) 11. jbaseline baseline;
else 11...aseline = 1;

if (stricmp(pltpos,"lr") ==0)

Ir[O] = XlI;lr[I~ YlI;lr[2] = X2;lr[3] Y2;
lrm_..X = rn...x;Irmn..y = rn..y,lrb_..x = b...x;lrb~y =~y

if (signsbhange =TRUE) 1r...aseline =baseline;

else 1r~baseline = 1;

149

return;

void switch...windows(char pltpos[])

if (stricmp(pltpos,"c") == 0)

setviewport(cIOI,c[1],c[2],c[3 ,1l);
rn.K= cm..ýx;m...y = cmybx= cb-x;b...y =by

if (stricrnp(pltpos,"u") =0)

setviewport(u[0I,u[1],u[2],u[3], 1);
mx= um..x;m...y = umybx= =bý~- by

if (stricmp(pltpos,"I") == 0)

setviewport(1[0I ,1[1] ,1[2] ,1[3], 1);
mx= lm...x;m-y = lm...y,b...x =lb_..x;b..y =lbjy;

if (stricmp(pltpos,"ur") = 0)

serviewport(ur[0] ,ur[1 I,ur[21],ur[31, 1);
rx= urrn...x;m..y = umybx=urb...x;b...y =urb__.y;

if (stficmp(pltpos,"ul") == 0)

setviewport(uI[0],ul[I],uI[2],ul[3I, 1);
mx= ulm...x;m..y = ulmjy,b...x =ulb .x:Ly =ulb..y;

if (stricmp(pltpos,"li") = 0)

setviewport(11[01 ,11[1] ,11[2] ,11[3], 1);
r.x= llrmx;rr . li.rn..y,b...x = llb..x;b...y = lb..y;

if (stricmp(pltpos,"lr") = 0)

setviewport(lr[0],lr[1]Ilr[2],lr[3], 1);
=_ý Irmx;m...y = Irm...y,b...x =lrb...x;b...y I rb4y;

void clear...plots(char pltpos[])

struct viewporttype cur-view;

150

int plot..height,plot-width,oldcolor;

getviewsettings(&cur-v.iew);
clearviewporto; /* Now have to redraw border & dashed line (if any) *
plot~beight =curý_view.bottom-cur~view.top;

plot~width =cur....iew.right-cur....iew.left;

rectangle(O,O,plot...width,plotheiglit);
setlinestyle(DASHED...LINE,O,NORTYLWIDTH);
if((stricmp(pltpos,"c") =0) && (cbaseiine != -1))

line(O,cjbaseline,plot~width,cibaseline);
if((stricmp(pltpos,"u") == 0) && (u...baseline != -1))

line(O,u...basline,plot~width,u..baseline);
if((stricmp(pltpos,"l") =0) && (1_baseline!=-)

line(0,Lbaseline,plotwidth,Lbaseline);
if((stricmp(pltpos,"ur") == 0) && (urjaseline !=-1))

line(0,ur...baseline,plot_..width,ur...baselinie);
if((stricmp(pltpos,"ul") == 0) && (ul-baseline =-1))

line(0,ul~baseline,plot-..width,ul-baseline);
if((stricmp(pltpos,"Il") == 0) && (11_baseline != -1))

line(O,l1-baseline,plo width,lLbaseline);
if((stricmp(pltpus,"lr") =0) && (lrjbaseline != -1))

line(O,lr..baseline,plot..width,lr...baseline);
setinestyle(SOLID_.LINE,0,NORMWIDTH);

erase4,lot()

closegrapho;
return-,

init~plot()

int driver=-DETECT,mode; /* Graphics driver and mode *
nt, errorcode;

/* Determine and setup graphics hardware *
detectgraph(&driver,&mode);
if (driver < 0)

printf("No graphics hardware availableftn');
printfC'Graphics driver error code = %d\n",driver);
printf("Location: initplot() routine in plot3.c\n");
exit(1);

151

errorcode=graphresulto;
if (errorcode != grOk) 1* Checking for graphics error ~

printf("Graphics error: %s\n",grapherrormsg(errorcode));
printfQ'Location: init~ploto routine in plot3.c\n");
exit(l);

/* Now create the x-y graph *
initgraph(&driver, &mode, "c:\\borlandc\\bgi");
if (driver < 0)

peffor('Graphics Error!\n");
printf("Graphics Driver = W%d~"driver);
printlY"'Location: init~plot() routine in plot3.c\n');
exit(I);

return;

Round input value

Inputs:
V - value to be rounded

Outputs:
V - rounded value

float rnd(float V,logical direction,int precision)

double fraction,integer,temp I ,temp2,
int count;

fraction = modf((double)V,&integer);
templ1 = modf(fraction*pow(1I0,precision),&temp2);
if(fabs(templI) < 1.Oe-04) tempi = 0;
if(direction UP) temp 1 = ceil(temp 1);
else temp I = floor(temp 1);
V = integer + (templ+temp2)/pow(10,precision);
return(V);

void find...precision(float del,int *precision)

152

int count;

if(del>=l)

* . count = 3;
"do

del /= 10.0;
count--;
if(del < 1) break;

I
while(count >= 0);

I
else
(
count = 0;
do
(

del *= 10.0;
count ++;

I
while(del < 1);

I
precision[O] = count;
return;

1

153

*.,• 7

-z

"Procspc.c" Source Program

Data processing program that strips low freq photo data from AM data.
Also, microphone data is convened to FFT data

Program: proc.spc.c
Programmer: Patrick T. Marshall
Date: 11/19/91
Organization: WRDC/AAWP-2,

WPAFB, OH 45433
Phone: (513) 255-2471

#include <bios.h>
#include <time.h>
#include <conio.h>
#include <io.h>
#include <fcntl.h>
#include <sys\types.h>
#include -sys\stath>
#include <dos.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <dir.h>
#include <string.h>
#include "c:\borlandc\thesis\logical.h"
#include "c:\borlandc\thesis\plot.h"
#include "c:\borlandc\thesis\proc..spc.h"

void set_upplt(charf],double,double,double,double,char[]);
void plot(float huge *,float,float,unsigned long,int);
void plot2(float luge*,float huge*,unsigned,int);
void label_plot(label-struct[],int,char[]);
void print_plot(vwid);
void erase plot(vbid);
void init-ploto;
exter int beg&rm It,end-mult;

/
/

The following processes photo words found in recorded speech and returns

154

results. This routine uses the "find_datao" routine to strip data from

the recorded speech data file. It then decreases the number of data

points by skipping data. Decreasing data is required due to a memory

limitation while using the DTW algorithm.

Inputs:
filename - complete file name (i~e. contains complete path & drive).

begtinme - beginning time of word
end_time - ending time of word
multnum - word multiple number

Outputs:
n - size of output buffer
outbuf - processed output buffer

Global:
complete.file.name - filename to be processed (includes path & drive)

starttime & stopftime - used in convertdata0

"float *processphodata(char filenamefl,float begtime,float endjime,

unsigned multnum,unsigned *n)
.1 {

float *find data(ctar[],char[],float,float,unsigned~unsigned*,
unsigned tong*);

float *filter data(float huge*,unsigned long,unsigned long*);

float *out-buf;
unsigned long count=0,beg_n=0,end_n--O;
"unsigned max mult_num,skip-intv=O;

strcpy(complete file namefilename);
getf'dejnfo(&max mult num,&numbytes);
P* where: max-mult.f.um = number of words and/or sentences & *I

numbytes = window size used to record data *1

close(file..handle); * "filehbandle" is a global variable used by *)

P getfile.info to open files and leave open *1

start.ime = O;stop time = numbytes/22.0/25 0 0.0;

beg...n(unsigned long)(begtime*2500);end_n=(unsigned long)(end jime*2500);

skip.intv = (unsigned)(end_n-beg..n)/l00;
0uthuf = finddata(filename,"P",beg--time'end-time'mult-num'&skip-intv'

.&count);
t out.buf = filter-data(outbuf,count,&count); /* Smooth out peaks */

n[01 = (unsigned)count;
return((void *)out-buf); 1

155

The following processes mic. words found in speech and returns results.
This routine uses the "find.Tdata()" routine to strip data from the recorded
speech data file. The data is then converted to FF1 datw which is used to
find max peaks w/i certain filter banks. Lastly, this algorithm will then
decrease the number of data points by skipping data. Decreasing data is
required due to a memory limitation while using the DTW algorithm.

Inputs:
filename - complete file name (i.e. contains complete path & drive).
beg_time - beginning time of word
endtime - ending time of word
"mult._num - word multiple number

Outputs:
n - size of output buffer
outbuf - processed output buffer

Global:
completefile_name - filename to be processed (includes path & drive)
starttime & stoptime - used in convert.data)

float *processmic data(char filename[],float beg-time,float end-time,
unsigned mulLnum,unsigned *n)

4
float *findwords(char[],unsigned*,char,unsigned);
iioat *finddata(char[],char[],float,float,unsigned,unsigned*,

unsigned long*);

unsigned long i--O,ii=O,begji=O,endji=O,max-..ar,count=O;
unsigned long maxjints,M,numjnts;

*, .• unsigned long INV,mem avail,prev buf.size;
unsigned long buf.size,skip-flag,max-mult num;
unsigned finishflag,numwords,skipjint;
float huge *outbuf,max-amp,pitch-freq;
float fsfreqjres,huge *real-arr,huge *img.-arr;
float volts[1],amplitude,freq,prev.amp,freq.count;
flozt ave..amplitude,filterBW,huge *inbuf;
FILE *tmpfile;
char pltpos[31,plot-info[50],p_.buffer[12];
label_struct labels[16];

strcpy(complete-file.name,filenwme);

156

1 %]/'

getfilejnfo(&max~mult~nuni,&numbytes);
/* where: max...mult-num = number of words and/or sentences & ~

1*numbytes = window size used to record data */
close(tile...handle);, /* 'filejiandle" is a global variable used by *

/* get-file-info to open files and leave open *
startijime = 0;stop-time = numbytest22.0/2500.0;,
beg i=(uinsigned long) (beg-time *25000.0);
end..i=(unsigned long) (end-timc *25000.0);
fs = 25000.0;, /* Mic sampling freq *
num-ints = end-i-beg-i;
maxjits = (unsigned long)farcorelefto/4/4;
MI = (unsigned long) floor(log 1 O(miax...ints)/log 10(2));
maxjints = (unsigned long)pow(2,M);
skipjint = (unsi gned)ceil ((float) num.Jn t.s(float)max~ints);
if ((tmnpfile = fopcn("c:\\borlandc\\thesis\\tmp.dat',"wb+")) ==NULL)

printf("ERROR(l): data file open failed!\n");
printft"Location: iso-mic_fft routine in proc...spc.c.\n");
perror(")

exit(1);

out~buf =find~data(rilename,"m",begjtime,endjtime,mult..num,&skipjint,

&count);
fs=(float)countf(end...time-begjtime); /* Calc new fs based on skipped data *
fwrite((void *)out~buf,sizcof(float),cou~nt,Lmpfile);
farfree((void*)out~bdf);
rewind (tmpfile);
if ((real~arr = farcalloc(maxjints+l,si7,cof(tloat))) =- NULL)

printf('ERROR(1): real array memory Allocation failedAn";
printf("num-int~s = %lu \n",numjints);
perror("");
printf(" Location: proc...spc() routine in proc...spc.c.\n");
farfree((void *)real-arr);
exit(I)

(read((void *)real-arr,si zcof(float),count,tmpfile);
fclose(tmpfile);
if ((img...arr = farcalloc(ma~x.Jnt~s+l,sizcof(float))) ==NULL)

printf("ERROR(2): img array memory allocation failed.\n");
printf("num-ints =%7lu \n",num-ints);
perror("");
printf("Location: proc-.spc (routine in proc...spc.cAn");
farfrcc((void *)rcal~arr);

157

exit(l);

INV = FALSE;
fft2(real-arr,img-arr,M,INV);
for (i=0;ikmaxjints;i++)

real~arr~i]i = sqrt(pow(real~arr[i] ,2)+pow(img-arr[i] ,2));
farfree((void *)jmgjliT);
freqjres = fs/(float)rnax.Jnts;max..amp=-5000;
filter.._BW=1I2;freq__sotnt=0.0;freq=0.0;i=0;count=0;
if ((Out_buf = farcalloc(20 1,sizeof(float))) == NULL)

printfQ'ERROR(5): out...buf buffer allocation failed !\n');
printf("Location: iso...mic...fft() routine in proc..spc.c.\n");
perror("");
exit(1);

ave...amplitude = O.0;ii=0;count=0;freqscount =filte~.v-BW;

for(i=-O;i<maxjints;i++)

freq =i*freq-res;
if(freq>=2000) filterBW = 60;
if(freq~dreq-sount)

avejunplitude += rea~arr[i];
count++;

else

ave...amplitude /= (float)count;
out~buf~iil = log 10(ave...amplitude);
ave-.aniplitude = 0.0;
ii-H-;count = 0;
freq-sount += filter...BW;

if(ii>=201) break;

farfree((void *)real arr);
*n =200;
return((void *)out~buf);

The following is a low pass filter for smoothing data. It performs
a 5-point interpolation.

158

inputs: data buffer to be filtered (smoothed)

buf size - size of in~buf
Outputs:

out..buf - filtered result of in-buf
n - size of out~buf

float *filter data(float huge *in buf,unsigned long buf..size,unsigned long *n)

unsigned long i=O;
float *outbuf,min..volts max-volts;
float threshold 1 ,threshold2;
char file[3 1I="",pltpos[3];

strcpy(&file[O],"c:\\borlandc\\thesis\\irinc.dat");
if ((out...buf = farcalloc(buf..size,sizeof(float))) == NULL)

printfC'ERROR(l): out_buf buffer allocation failed !\n");
printfC'Location: filterj..ata() routine in proc...spc.c.\n");
perror("");
exit(O);

min-.volts = 5.0;
for (i=2;i<buC.size-2;i++) P* Smooth out peaks *

ouLbufli] = (float)((inj.ufli-2] + 4.O*in..bufli-1I + 6.O*inj..ufli] +
4.0*in-buf~i+l] + inbuffi+2])/16.O);

min - olts = min(out...buf[i-2],min...olts);

out~buf[II = 1/4.O*in...buf[O1+ l/2.O*in..buf[11+ l/4.O*in..buf[2I;
out~buflbuf...size-2] = 1/4.O*in~buf[buf~size-3]+ lI2.O*in...buf~buLsize-2]+

out~buf[O] = 314.O*injbuf[O] + 1/4.O*injbuf[l];
out~buflbuf..size- I] = 3/4.O*in...buf~buf..size-1I + I/4.O*in~buflbuf..size-2I;
n[OJ = buLsize;
farfree((void *)in-buf);
return((void *)out~buf);

The following is an energy normalization algorithm. The input buffer
(in...buf) is normalized w.r.t it's energy content.

159

Inputs:
n - number of data points in inbuf
in_buf - buffer to be normalized

Outputs:
inbuf - normalized buffer
maxy - max y value (normalized amplitude)
maxn - n value at maxy

float *normalize(unsigned n,float huge *in-buf,float *maxy,unsigned *maxn)
{
unsigned i=O;
float norm=O,min_y=l.Oe+06;

/* Find min. to set offset to zero */
min..y=1.Oe+06;
for (i=O;i<n;i++) min.y = min(min.y,in-bufli]);
for (i---O;i<n;i++) inbuf[i] = in buf[i] - min.y;

/* Calc. denominator for enery normalization */
for (i=O;i<n;i++)

norm += pow(inibuf[i],2);
norm = sqrt(norm);*maxy = -le4;*maxn=O;

/* Energy normalize data */
for (i=O;i<n;i++)(
in_buf[i]/= norm;
maxy[O] = max(maxy[O],in.buf[i]);
if(maxy[O] == injbufli]) maxn[O] =i;

I
return((void *)inbuf);I

The following is called from findwordsO routine. Its purpose is to
find the microphone energy function.

Input variables:
data-buf - empty data buffer
word-num - word multiple number (for convert-dataO routine)

Output variables:
databuf - filled energy data buffer
time-inv - time between intervals
n - length of buffers

160

float *energy(float *time inv,unsigned long *n,unsigned mult..num)

.float huge *convert data(unsign~ed *,unsigned,char[l,unsigned long*)
double fract,intpart,x;
float huge *raw dat,huge *data...buf~fs,window;
float stop~j,energy,time;
unsigned max...mulý_num,finishjflag,data...buf..size,ii=0O;
unsigned long buC.size,count=0,i=0O;
char pltpos(21;

get~filejinfo(&max...mult..nurn,&numbytes);
1* where: max...mult~num = number of words and/or sentences & ~

t* num bytes = window size used to record data */
close(file...handle); 1* "file~handle' is a global variable used by *

1* getfilejnfo to open files and leave open *
fs =25000.0;window = 300.0;
start~time = 0;stopjime = numbytes/22.0/2500.0;
datL.bufsize = ceil(stopjtime*fs/window) + 1;
if ((data ,uf = farcalloc(data...bufjsize,sizeof(float))) =NULL)

printfC"ERROR(2): data buffer allocation failed !\n');
printf("Location: finc~mic...words() routine in contrec.c6n");
perror(")
exit(I);

stopjt = 0;count = liji = ;energy =0.0;

finish-flag = TRUE; /* Tells convert_data, 1st run ~
do /* Average every window'th data point *

raw...dat = convert-data(&finish...flag,mult..num,"m",&buflsize);
for(i=0;-i<buf..size;i++)

energy += fabs(raw..dat~iI);

x = (double)ii/window;
fract =modf(x,&intpart);
time += Iffs;
if~fract == 0)

energy /= 'window;,
datajbuflcount] energy;
energy = 0.0;
if(count =1) timejinv[0I time;

161

count++,;
if(count >= data buf_:size)

finish-flag = TRUE;
break;

•)

if(count >= databufsize)

finish.flag = TRUE;
break;

S~)
I
farfree((void *)raw dat);
if(count >= databuf.size)
i
finish-flag = TRUE;
break;)

I
while(finish flag=FALSE);
data.buf[O] = data.buf[1];
for(i=l ;i<count-1;i++) /* Interpolate between data to eliminate time phase */
{ I* shift (i.e., eliminate time offset by shifting waveform to the right */
data buf[i] = (data.buf[i] + data_buf[i+l])/2.0; /* by time_inv[O]/2) */
I
*n = count;
return((void *)data~buf);)

* * WORD BOUNDARY DETECTION SENSOR FUSION ROUTINE

The following is called from the "template.c" & "spch-rec.c" routines.
Its purpose is to find the correct beginning & ending boundaries for a
given word. This routine compares both data types (mic time energy &
photo time volts) to help decide where words begin & end.

For isolated words this routine relies more heavily on the mic energy
distribution to find words. It searches the mic energy for the largest
peak value & records its time. It then checks other mic peaks to see
if they are w/i +/- 0.2 sec of max peak. If they are then this routine
will treat the other peak(s) as part of the original max peak. The

162

algorithm also searches the photo to find the corresponding max-peak value
that is w/i +/- 0.2 sec of max mic peak. Lastly it adjusts photo
endpoints if necessary.

For continuous words this routine relies more heavily on the photo
amplitude to find words. It matches peak photo values with peak
mic values. For a each match this routine checks to see if the
photo beginning is lagging the mic beginning. If it is by a certain
amount then it treats the mic word as two words. Also if the endpoints
don't match w/i a certain amount the routine will again treat the mic
word as two words.

input variables:
filename - complete file name (i.e. contains complete path & drive).

- -op.mode - (i)solated or (c)ontinuous

Output variables:
None

Output word time filenames:
phowrdtm.Onn (nn = 00 to 16)
micwrdtm.0nn (nn = 00 to 16)

Global:
complete..filename - filename to be processed (includes path & drive)
start time & stoptime - used in convert_dataO

void sensor.fusion.segmentor(char filename[j,char op_.mode)
(
float *find_.wol ds(char[],unsigned*,char,unsigned);
unsigrned find-peak(float[],unsigned);
void buildpath (char*, char*, char*, int);

float *pho word times,*mic word times,time,pho-peak-time,mic .peak time;
float min_timel,min-time2,mic-peak.value,del_beg,delend,del peak;
float phobeg.time,pho end-time,mic beg..time,mic end time;
unsigned i,ii,iii,beg_i,end_i,numphowords,nummicwords;
unsigned mic-beg..nam,mic_.endnum,micpeak-num;
unsigned pho beg..num,phoend..ýnm,mic_.word,phoword,max. mult_num:
unsigned bad..photo -.words = 0,extra_rmic_words = 0,extra.phowords = 0;
unsigned pho.wordmatch;
int peakmatch_atr[30];
extern char complete.filename[];
char file[50]="";
FILE *phoptr,*micptr;

163

strcpy(complete-file-name,filename); /* For get..file..info()*
get~filejinfo(&max...mult..num,&numbytes);
/* where: max_mult_num = number of words and/or sentences & ~

1*numbytes = window size used to record data */
clo~se(file...handle); /* "file-handle" is a global variable used by *

/* geLfile-info to open files and leave open *
/* The following is required in convert~data() routine *

start.time = 0;stop-time = numbytes/22.0/2500.0;
beg...i=beg-mult;endJi=end-mult:-
for(i=-O;i<30;i++) peak..match...arr[i] = 1;
for(i~begji;i<=endji;i++)

build..path(file,drive,"\\borlandc\\thesis\\phowrdtm ",i);
if((phoptr = fopen(file,"wb+")) =:- NULL)

{ ~/* Pointer to word endpoint time file *
wait...message(0,7,"'ERROR(1): data file open failed!"',

"Location: sensor....fusion-.segmentor() routine in proc...spc.c");
perror(" ");exit(0);

build-.path(file,drive,"\\brorlandc\\thesis\\micwrdtm",i);
if((micptr = fopen(file,"wb+")) == NULL)I

(~/* Pointer to word endpoint time, file *
wait...mes~sage(0,7,"ERROR(2): data file op=n failed!",

"Location: sensor-fusion..segmentor() routine in proc..spc.c");
perror(" ");exit(0);

pho -word_times = find_words(filename,&num .. pho '- words,'p',i);
mic_word_times = find..words(filename,&num-mic_ýwords,'m' i);
min-..time -32000;,ba d..photq..words = 0;
/* Compare data type word times & find correct words beg.' & end.'s *
if(op...mode =='c) /* Process continuous words - only work on mic. words *

fwrite(&num mic_words,sizeof(unsigned), 1L,rnicptr);
/* First get rid of mic words w/pealcs amplitudes < 0.05 volts *

mic..peak,..value = mic...word times[2];
for(ii=0;ii<4*num_mic...words;ii+=4)

mic...peak~value = max(mic~peaik..value,mic_ wordjtimes[ii+2]);
for(ii=0;ii<4*num-mic...words;ii+=-4)

if(m ic...wordjtimes[ii+2] < 0. 1 *mic peak value)
{ * Found a bogus mic word */

for(iii=ii;iii<4*num_mic_words;iii+=4)
1 ~/* Shift array values to the left *

mic...word...times[iii] =mic..word..times[iii+4]; /* Beg. time *

164

mic..word_times[iii+II = mic_word_times[iii+5]; I* Peak time *
mic.,.word....imes[iii+2] = mic~worc~times[iii+6]; /* Peak amp. *
mic...wordjtimes[iii+3] = mic_word_fimes~iii-i7]; 1* End, time *

num~mic-words-- ;ii-=-4, /* Have to compensate for shift *

/* Now find beg & end photo words compared to beg. & end mic words *
for(ii=0;ii<4*num...pho...words;ii+=4)

time = fabs(mic....ord...tmes[IJ - pho..word_times[ii+l]);
if(ii == 0) min..,timelI = time;
mm _tme I = min(time,minjfimel1);
if(min-time I = time) pho...beg-num =E;
time =fabs(mic...word-times[4.*(num...micWords-1)+1]

-pho...word_times[ii+lI);

if(ii ==0) minjtime2 =time;

min~time2 = min(time,mi.ijtime2);
if(minjfime2 = time) pho...end_num = ii;

for(ii=pho-beg-.num;ii<=pho...endcnum;ii+=-4)
{/* Now write photo words for both mic & photo words *

fwrite(&pho..wordjtimes~ii] ,sizeof(float), lL,micptr);
fwrite(&pho...word...times[ii+3] ,size~of(float), lL,micptr);

rewind(micptr); 1* Overwrite mic file with new # of mic words *
num~mic..words = (pho end_num-pho...begjium)/4+l;
fwrite(&num...mic...words,sizeof(unsigned), lL,micptr);

else /* Prccess isolated words *

for(ii=-O;ii<4*num-..mic...words;ii+=4)
I/* Match mic & photo wa)rds by comparing peak distances *

mic..peak-time = mic..word-times[ii+lI;
nmin-time = 32000;
for(iii=0O;iiicz4*num..pho...words;iii+=-4)

pho-.peAkjime = pho...word..times[iiil+ 1;
time = fabs(pl,.)peak-time - mic.-.peak-..time);
,nin~time = min(time,min~..time);
if(min..,time - time) pho...wordcrmatch = iii/4;

I 1~* Matched pair ~
if(min..time < 0.2) peak...matcl..arr[ii14] =pho...word...match;

I/* Find max mic peak *
niic...peak...value =-5000.0;

165

for(ii=0O;ii<4*num-mic...words;ii+=4)

mic...peak_value = max(mic..peak...value,mic...word~times[4*ii+21);
if(mic..peak..value == mic~word~tmes[4*ii+2]) mic...peak...num = wi;

mic...begjtime = mic.~word tim~es[4*mic...peak-num];
mic_end_time = mic-word..times[4*mic..peak-num+3];
pho...beg-.time = pho...word times[4*peAk..match...arr[mic...peak...num]l;
pho_end_time = pho...word times[4*peak....matchjtrr[mic...peak...numl+3];
/* Check for multiple peaks & combine if found *
if((mic..peak..num > 0) && (num-mic_words >1)

{ 1~* Compare to previous peak *
mic...peakjtime = mic...ordjtires[4*(mic...peak....num. 1)+ 1];
if((mic...word times[4*mic..peak_num+1] - mic...peak...time) <= 0.25)

(* Change beg.time to previous peak's beg. time *
mic..beg...time = mic...word...times[4*(mic...peak -num- 1)1;
if(peak..Match...arr[mic...peak...num-1] != -1) /* Adj. photo beg. also *
pho..end...time = pho~word~times[4*peak~match...arr[mic..peak-num- 1]];

if(mic...peak...num < (num...mic...words - 1))
4 1~* Compare to next peak *

mic...peak_time = mic_ýword -times[4*(mic...peak....num+l)+11;
if((mic...word~times[4*mic..peak_nuim+1] - mic...peak...time) <= 0.25)

/ * Change bcg.time to next peak's ending time *
mic...end...time = mic..word_.f imes[4*(mic...peak....num+lI)+3];

if~pak mtcharrmi .peak..num+ 1] !-1) /* Adj. photo end also ~
pho...end-.time = pho...word... mes[4*peak..Matchr.arr[mic...peak..num+ 11+3];

if((fabs(pho...begjtime - mic...begjine)) > 0. 1)
pho...beg...time = mic..beg-time - 0.05;,

if((fabs(pho_end_time - mic...end...time)) > 0. 1)
pho...end..tIme = mic_.,end..time + 0.05;

if(num...pho-words == 1)

pho...beg...time = pho...wordjimes[0];
pho_..end...time = pho_wordjtmes[3];

if(num...pho-words == 0)

pho-.beg...time = mic...beg...time - 0.05;
pho_..end_time = mic.~endjtime + 0.05;

if(pho...beg-fime < 0.0) pho-.begjtime =0.0;

166

if(pho..endjtme > stopjime) pho..end...time =stop...tlme;

num...pho....ords = 1;num_..mic...words = 1;
fwrite(&num..pho...words,sizeof(unsigned), 1L,phoptr);
fwrite(&num ~mic_words,sizeof(unsigned), L,micptr);
fwrite(&pho-..beg-time,sizeof(float), lL,phoptr);
fwritA.(&pho.,.endf..ime,sizeof(float),1IL,phoptr);
fwrt(&mic..beg,..time,sizeof(float), lL,micptr);
fwrite(&mic_end_time,sizeof(float), IL,micptr);

free((void*)phq..wordjtimes);free((void*)mic..wordjtimes);
fclose(phoptr);fclose(micptr);

return;

The following is called from several routines. Its purpose is to find
the peak word in a word array.

Input variables:
word...times - array contining word info. (beg. time, peak, time, peak

value, & end time)
num...words - number of words in array

Output variables:
peak...word - word w/highest peak value

unsigned find...peak(float wordjtmes[],unsigned num..words)

unsigned i,peak...word;
float peak...value,max..value;

max-y.alue = -5000;
for(i=-O;iknum...words;i++)

peak....alue =word-timesfi*4+21;

niax..value =max(max...value,peak..value);

iftmax...alue == peak...value) peak..word = i

return(peak...word);

The following is called from several routines. Its purpose is to find
the words in either photo volts or in mic. energy. Note that if this

167

algorithm does not find a word(s) it returns "0" for number of wqrds
found and an empty "timemarr".

Input variables:
filename - complete file name (i.e. contains complete path & drive).
type.data - (m)ic or (p)hoto data
mult_num - word multiple number (for convert.data) routine)

Output variables:
time_arr - Array w/beg. & end. times for beg. & ending points of words.

The order is: (1) beginning time, (2) peak time, (3) peak
amplitude, and (3) ending time.

numwords - number of words found

Global:
complete-file-name - filename to be processed (includes path & drive)
startjtime & stoptime - used in converLdata0

i** * * *** ** **, 8* * t* *** ******** * * *** * *** * ** * * ** ** ** ** ** ** ** * ** ** S* * ** * * ** * ** **

float *findwords(char filenamef],unsigned *numwords,char data.-type,
unsigned multnum){

float *filter_data(float huge*,unsigned long,unsigned long*);
float *energy(float*,unsigned long*,unsigned);
float *normalize(unsigned,float huge *,float *,unsigned *);
float huge *convert data(unsigned *,ursigned,char[],unsigned long *);

float huge *rawdat,time,fs;
float begtime,endtime,delave=0,thershold,ave back,ave-foward;
float peaktime = 0,*time arr,time_inv,maxvlue,min_value,min__y,max..y;
unsigned long i,ii,iii,j,count,buf..size;
unsigned max mult..num,array_..size,numread,win;
int slope--0,prevslope=O,storeslope[3];
extern char completefilename[I;
char file[31]="";
logical finishflag = TRUE,beg-found = FALSE,peak-found=FALSE;
logical endjound = FALSE;

strepy(complete-file-name,filenarne); /* For get.fileinfo0 *1
get_file info(&max_ mult,_num,&numbytes);
/* where: maxmult_num = number of words and/or sentences & */
/* numbytes = window size used to record data */
close(filehandle); /* "filehandle" is a global variable used by */

P* get file-info to open files and leave open */
if ((timearr = farcalloc(180,sizeof(float))) == NULL)
{

168

/ \ . /,"

printfC'ERROR(l): tinie..arr buffer allocation failed!\n");
printf("Location: find..pho....ords() routine in cont~rec.c\n");
pefror('");
exit(1);

/* The following is required in convert~dataO routine *
startjtime = 0;stop_time =numbytes/22.0/2500.0;

if(datajtype == 'p')

fs = 2500.0;
win = 20; /* Set window width for averaging data *
thershold =0.05; P* Set slope voltage threshold *

else

7 win= 3;
fs =25000.0;
thershold = 0.02;1 /* Set slope voltage threshold *

timejinv = 1.016;'
/ finish jiag = TRUE;

min-4 = 5000;max..y= -5000;
do /* Find min & max values *

if(datajtype =''

rawjlat = convert _data(&finishjýlag,mulLnum,"p",&buf...size);
else

1raw..dat = ener y(&time~inv,&count,mulLnum);
raw...dat =filtei- data(raw~dat,count,&count); /* Smooth out peaks *

N raw-dat = filteý'_data(raW_dat count,&count);
buf.size = (long)count;

for(i=0-;ikbuf..size;i++)

min...y =min(min..y,raw...dat(iI);

maxj = max(max..y,raW~.dat[i]);

farfree((void *)raw~dat);

while(fihiish~flag==FALSE);
for(i=0O;i<3;i-e+) store~slope(il = 0;max~yalue=-5000;miny iue=5000;
finishjago = TRUE;L -: ;iii=0O;count = 0;
time = (float)win*timejnv; /* Start time *
beg...time=0O.0;end-time=0O.0;

169

do I* Find beg. & end of words ~

if(data-type =='p')

raw_dat = convert..data(&fmrish..flag,mult~num,'p",&buf..size);
for(i=-O;ibuf..size;i++) raw...datf i] -= min..y;

else

raw...dat, = energy(&time-inv,&count,mult.,num);
raw_dat = filter...data(raw...dat,count,&count); /* Smooth out peaks *
raw...dat = filter..data(raw...dat,count,&count);
buf..size = (long)count;

for(,i=win;i<buf..size-win;i+-i) /* Find beg. & end. or words ~

ave-back = 0.0;avejfoward = 0.0;
for(ii=0O;iikwin;ii+-i) avejfoward += raw...dat[i+ii];
for(ii=0O;iikwin;ii+-i) ave-back += raw...dat[i-ii];
avejfoward /= (win-l1);avejback /= (win-i1);
del_ave = avejoward - avejback;
prev.-.slope = slope;
if(fabs(del~ave) < thershold) slope = 0;
else if(deLave >= thershold) slope = 1;
if(del~ave <-- -thershold) slope = 1;
if(prev..slope != slope) /* Slope changed *

strIlp[]= tr~lp[]
store~slope[0] = store...slope[1];

store,..slope[2] = slope;

if((store_..slopc[l1 <= 0) && (store...slope[2] =1) &
(beg-..found =FALSE))

1 1~* Found be~jx1Iing ~
beg-found = TRUE;
if(data...type W in) thershold =0.01;

if(peakjound = TRUE) peakjfound = FALSE;
else b-g-time = time;

if((store_.,.slope[0] == 0) && (store...slope[l I] = 1) &&
(store~sope[21 <= 0) &&
(peakjound == FALSE) && (endjound != TRUE)

/* Found peak *
peakfound = TRUE;

A peak June =time;

170

max-value =raw-.dattil;

if((peakjfound == 'TRUE) && (end-found FALSE))

max-valuc = max(max~valuc.raw~dat[ij);
if(inax~valu; == raw..~datliJ) peak-time = tinme; /* Found a better peak *

if((store-slopc[0J >= 0) && (storej.lope[1I =-1) &&
(store..slope[2J >= 0) && (peak jound ==TRUE))

4 ~/* Found end *

beg found = FALSE;
peak-found = TRUE;
endj'ound = TRUE;
end imne = time-,
foroj=0;j<3;,j++) store-slopeUl 0;
prcv...slope = ;slope = 0;
min~value =ralv~at[ij;.

if(min..valuc < (0.15 *nax...value)) beg-found =TRUE;

1* Definitely found enu *

if (end jound == I RUE)

min...alue = min(min~value,raw~dat[iJ):
if(min..value == raw~dat~i]) end....ime = time; /* Found a better cnd ~
if(min~valuc < (0. 15*max...alue)) heg...found =TRUE;

/* Definitely found end ~

if((begjfound==TRUE) && lend found==TRUE))

time~arrjiii] = beg_time:,
time...arr[iii~IJ = p)eak..tni c;
time...arrjiii+2J = max valute;
time_arr [iii+3] = endjtime;
if(pcak..found ==FALSE)

beg-time = time;,
beg-found =TRUE;

else

begjfound =FALSE;

if(datajtypc ==m'in) thershold =0.02;

peakJound =FALSE;endjfound =FALSE;

171

if((data_type = 'im') && (maxvalue. (0.3*max.y))) iii 4;
max _value=-5000;minvalue=5000;

I
time += timecinv;

I
farfree((void *)ralvdat);I

while(finish_flag==FALSE);
if(peakjound == TRUE)

timearr[iiil = beg-time;
time arr[iii+l] = peak-time;
time arr[iii+2] = maxvalue;
if((begfound == FALSE) && (end_found == TRUE))

timearr[iii+31 = end_tine;
else time arr[iii+3] = stoptime;
iii += 4;
if((data type == 'm') && (maxvalue < (0.3*max y))) iii -= 4;

I
numwords[O] = iii/4;
return(time-arr);

I

The following strips raw data out of data file, skips data intervals,
& returns data.

Inputs:
beg-time - beginning time
end-time - ending time
mult-num - word multiple number
filename - complete file name (i.e. contains complete path & drive).
data type - (d)hoto or (m)ic
skip intv - skip data interval size

Outputs:
n - size of output buffer
out buf - processed output buffer

Global:
complete-file-name - filename to be processed (includes path & drive)
start-time & stop-time - used in convertdata0

float *finddata(char filename[l],char datatype[],float beg-time,
float end-time,unsigned mult-num,unsigned *skip-int,unsigned long *n)

172

float huge *convert-data(unsigned *,unsigned,char[],unsigned long*)
double fract,intpart;
float *out-buf~huge *raw-dat,fs;
unsigned long buf~size,maxjiii,beg-.n=0,end...n=0,i=O,i i=0,iii=0;
unsigned finish-flag~max...mult-num;

strcpy(complete...file...name,filename);
get~filejnfo(&max...mulLnum,&numbytes);
/* where: max~mult~num = number of words and/or sentences & *

1*numbytes = window size used to record data */
close~filejiandle); /* Ifile...handle" is a global variable used by,*/

P* get-file-info to open files and leave open *
start..time = 0;stop-time = numbytesf22.012500.0;
if(datajtype[01 == 'p') fs = 2500.0;
else fs = 25000.0;
beg...n=(unsigned long)floor(begjtime *fs/(float)skip int[0]) *skip~int[O];
'end...n=(unsigned long)ccil(end...time*fs/(float)skipjint[0])*skipjint[0];
if(end...n > (unsigned long) (stop...tme *fs))
end~n = (unsigned long)floor(stop...time*fs/(float)skipjnt[0I)*skip.Jnt[0];

maxiii = (end...n-beg...n)/(unsigned long)skipjint[O] + IL;
if(max~iii > farcorelefto/2/8)

max-.iii= farcoreleftO/2/8;
skipjint[OI = (unsigned) ((end...n-beg...i/(m axjiii - IL));

if((outbuf = farcal~oc(maxjiii+l,sizeof(i1 at))) = NULL)

printfC"ERROR(1): out-buf buffer allocation failed!Rn");
printf(" Location: iso...pho..env() routine in proc...spc.c.\n");
perror('');exit(O);

finishjflag=TRUE;ii = 0;iii = 0; -dowrsdo /* Find beg.& dofwrs/

raw...dat = convertdata(&finishjlag,mult..num,,data..type,&buf..size);
for (i=-O;i<buf...size;i++) /* Store point it. ý)ut buffer *

4 ~/* & skip every "skip\rni one ~
fract = modf((double)(iilskip...nt[0]),&intpart);
if((fract == 0) && (ii >= beg..n) && (ii <= endJ .n))

if(datajtype[01 == ep') raw...datfil += 2.5;
out...buaiiiil = raw...datfil;
iii++,

if(iii >= max...iii)

173

finish-flag =TRUE;

break;

if((ii > end-n) 11 (iii >= max-iii))

finish-flag = TRUE;
break;

farfree((void *)raw-dat);

while(finish-fag==FALSE);
if(iii > max...iii) iii = max.Jii;
*n =jii;

returnf(void *)out~buf);

float calc-.pitch (float arrf],unsigned long countjfloat freq-jcs)

unsigned long i,startji;
float max...amp,freq,fo,amp,thershold;

Iliershold = 100000;
max-.amp=-5O0;
start..i =floor(80.0/freq-res);
for(i=swtari;ikcount;i++) /* Finding 1st max *

freq = i*frcq-res;
amp = arr~iI*arrli]*arrli];
max...anip =max(max...amp,amp);
if(max~amp > thershold)

if(max-.amp ==amp) fo freq;
else break;

return(fo);

174

"FFT.c" Source Program

/

PROGRAM: 1 DIMENSIONAL FAST FOUTIER TRANSFORM PROGRAM
ALGORITH: DECIMATION IN TIME, RADIX 2, INPLACE FAST FOURIER

TRANSFORM
AUTHORS: COOLEY, LEWIS AND WELCH

r-CODE: MA17 DIERKING - USAF/FORIEGN TECHNOLOGY DIVISION
VERSION: 5 MAR 85

THIS PROGRAM CALCULATES THE DISCRETE FOURIER TRANSFORM FOR
A
SEQUENCE OF DATA OF LENGTH N, WHERE N IS EQUAL TO M**2. THE
CALCULATION IS DONE USING THE COOLEY AND TUKEY ALGORITHM FOR
DECIMATION IN TIME, RADIX 2.

PROGRAM INPUTS:
AR FLOAT THIS IS THE INPUT REAL DATA SEQUENCE FOR WHICH

THE FOURIER TRANSFORM IS DESIRED.
A-1 FLOAT THIS IS THE INPUT IMAGINARY DATA SEQUENCE FOR

WHICH
THE FOURIER TRANSFORM IS DESIRED.

M INTEGER THE POWER OF TWO WHICH INDICATES THE NUMBER
OF SAMPLES IN THE SEQUENCE.

INV INTEGER FLAG TO INDICATE WHETHER THE TRANSFORM OR
ITS

INVERSE IS TO BE CALCULATED.
0 - TRANSFORM
1 - INVERSE TRANSFORM

PROGRAM OUTPUTS:
AR & Aj

FLOAT THESE ARE THE FOURIER TRANSFORMS OF THE INPUT
SEQUENCE. THIS IS AN INPLACE ALGORITH, IE.
THE OUTPUT OF THE ALGORITHM REPLACES THE
INPUT DATA.

#include <dos.h>
#include <math.h>

175

#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <graphics.h>

#define pi 3.14159265358979

typedef struct I
float R;
float 1;
| complex;

fft2(float huge *AR,float huge *A _,unsigned MKint INV)
(
unsigned long I,IP,J,K,N,L,LE,LE I,NM 1,NV2;
complex U,U1,W,T;
float ANG;

U.R = 0;U.I = O;W.R = O;W.I -= O;T.R O;T.I 0;

N = (unsigned long) I << M;
NV2=N/2;NMI =N-I;J = 1;

for (1=1; 1<=NM1; I++)I
if (I < J)
(
T.R =AR[J- I];

T. =A_J(J-11;
AR[J-1] = ARt111;
AI[J-1 =Ai[I-I];
AR[I- I] T.R;
A_I[I-I] =T.I;)

K =NV2;
while (K < J)I
J = J-K;
K = K/2;I

J=J+K;I
for (L=1; L<=M ;L++)
I

176

LE =(unsigned long) 1 <<L;
LEI = LEI2;
U.R = 1.0;
U.I = 0.0;
ANG =pi/ (float) LEI~;
W.R =cos(ANG);

W.1 = sin(ANG);
if (INV != 0) W-I -W.1;
for QJ=1; J<=LE 1; J++)

for (14J; 1<=N; I+=LE)

Ip = 1+LE I;
T.R = (AR[IP-(unsigned long)l 1* U.R) - (Aj[1P-(unsigned long)] * -)

T.1 = (AR[IP.(unsigned long)l] * UJI) + (Aj[IP- (unlsigned long)1] *.)

AR(IP-(unsigfled long)1I = AR[Ik(unsigfled long)1] - T.R;

Aj[1P-(unsigned long)1I]= A_1[I-(utisigfled long) 1] - Ti1;

AR3[I-(unsigned long) I] =AR3[1-(unsigned long)1I1 + T.R;

Aj[I-(unsigned long)1 I A_1[1-(unsigned long)1I + Ti1;

U1.R = (U.R * W.R) - (U.1 * .)

UL.! = (U.R * W.1) + (U.1 * .)

U.R = UI.R;
U.1 =Ul.1;

if (INV! =0)
for (1= 1; I<=N; I++)

A..R(1-lI] /= N;
Aj[]-1 I] N;

return;

177

"Convdat.c" Source Program

Data convertion program that strips out merged photo data from
microphone data and returns either. The routine fills a buffer with
converted float data from a binary file.

I/p & O/p varibles:
finished-flag: If i/p - tells routine that this is a new run.

If o/p - tells calling routine whether this
routine is finished converting data.

plotnum: I/p only - Tells this routine which multiple word
number to convert (e.g., if plot -num = 3 then this
routine will convert the 3rd multiple of a
particular word.

data-type: I/p only - Tells this routine which data type
(mic or photo) to convert.

store_buf_size: 0/p only - Tells calling routine size of converted
buffer.

Global varibles:
complete-file-name: (1/p only) Calling routine must provide this

(include drive and path). This routine will then
call "geLfilejinfo" that uses this variable to open
a particular word file (e.g., "rawdat.O00"). It also
leaves the file open and data pointer set 1st byte
to be converted.

filehandle: (1/p only) Returned after calling "get-filejinfo".
This routine will used read from data file and
then close the file.

starttime: (1/p only) This routine uses this time to find
starting position of file left open after calling
"getjfile_info". Since this is a global variable
used by other routines, the calling routine must
reset "startjtime" to original value when finished.

stop-time: (0/p only) This routine uses this time to tell
calling routine ending position of word file.
Since this is a global variable used by other
routines, the calling routine must reset "starttime"
to original value when finished.

Program: conv.spc.c
Programmer: Patrick T. Marshall
Date: 2/25/91

178

Organization: WRDCIAAWP-2,
WPAFB, OH 45433

Phone: (513) 255-2471

#include <bios~h>
#include <time.h>
#include <conio.h>
#include -Go.h>
#include <dcntl.h>
#include <sys\types.'i>
#include <sys\stat.h>
#include <dos.h>
#include <math.h>
#include <sidio.h>
#include <stdlib.h>
#finclude <alloc.h>
#include <dir.h>
#include <string.h>
#include "c:\borlandc\thesis\logical.h"
#include "c:\borlandc\thesis\conv....spc.h"

void geLfile~info~unsigned *,unsigned long*)

float huge *convert data(unsigned *finish-flag,unsigned plot...num,
char data...type[],unsigned long *store_buf_size)

unsigned long rnc-off(float);
float huge *store...buf;
float maxjt,fs,volts;
unsigned exiLroutine=O;
unsigned hit far *read-buf;
unsigned toLnum-.plots,max..par;
unsigned long beg...byte,floor...val;
unsigned long read-.buf..size=-O,max...int~sount=O storeý_count=-O,int.count=-O;
unsigned long i,num-fats=O,start. memav-0=;
static float startj.,stop. v

start..mem~avail = farcorelefto;
/* Open file and leave open *

gct~filejnfo(&tol~num...plots,&numbytes);
/* where: tol~numjuns n. umber of words and/or sentences & *

1* numbytes = window size used to record data *
if(plot~numn > tol~num...plots)

179

printfQ'ERROR(l): plot-num > tol~num...plots in conve-..at~a routine\n")-:
exit(I);

max-t = numbytes/22.0/2500.0;
if (*injsh-flag == 1) /* New run ~

if ((stopjtime > maxjt) 11 (stop...time < startjtime))
stopjt = maxjt;

else
stop-t = stopjtime;

if ((start...time > maxjt) 11 (start.time > stopjtime))
startj =0;

else
star~t = start...ime; /* static var. controled by this routine *

else /* Continue old run *

starLt = stop...t; /* static var. controled by this routine ~
stop-t = stop-time;

tol-mem-avail = faihcorelefto;
if (*data-type =='p') /* Photo data *

fs = 2500.0;
beg-..byte = rnd...off(2.O*fs*startt*l 11);

else /* MIC data *

fs = 25000.0;
beg-.byte = rnd-off(2.00 (fs*start_t+l1+floor(fs*start~t/ 10.0)));

I* Throw first 4 bytes & position pointer start byte *

lseek(rile...handle,beg...byte+(pi~otnum- 1)*numbytes+6,SEEK SET);
in~tcount = floor((float)(beg...byte/2.0));
n6,m..floats = floor((fs*(stopjt - startj)));
if (num~jloats*4 > tol_mem_.,.avail) /* Won't reach end *

*Iinish-flag = 0;
st, ýre -buf..size[0I = floor(0.98*tol~menl_avaiil4.0); /* Stop when buffer used >=

/* of available memory *

else /* Will reach end *

*finish-flag = 1;
store..buf...Size[0] =numjfloats; /* Stop when buffer used =number floats *

180

if ((storejiuf =farcalloc(store..bufjsize[0],sizeof(float))) =NULL)

printfQ'ERROR(3): storage buffer allocation failed in convert-data routine.\n");
perror("");
exit(l);

toL.mem~avail =farcorelefto;

if (toLmemn..avail > 64000) /* Check for read buffer size limhitation *
read buf size = 32000;

else
readjbuf.size = floor(toL~mem..avail/2.0);;

if (*data-type == p') /* Photo data *
max-int-count = I I1*store-buf~size[0];

else /* MIC data *
maxjmt -count = I+floor((float)storebufsi7,e[0]/10.0)+storebufsize[0];

maxint_count += it~count;
if (read...ufsize > max-inLcount) readj~uf..size = max-int_count;
if ((read buf = tarcalloc(read~bufsize,sizeof(int))) =NULL)

printff"ERROR(2): read buffer allocation failed in convert..data routineAn");
perror("");
exit(l);

do

if ((read(fil~e...andle,readj~uf~read_buf~size*
sizeof(int))) == -1)

printf("ERROR(4): read failed in convert..data routineAn");
perror("");
exit(l);

for (i=0;ikread_buf~size;i++)

if (read...uf~i] > 4096)

printf("ERROR(5) in convert..Aata: Byte Error - read_.buf > 4096 !\n");
exit(I);

volts = 5.0I4096.0*(float)(reat.. buf[i])-2.5;
if ((volts > 2.5) 11 (volts < -2.5))

printf("ERROR(6): Volts = %f \n",volts);
printf("Location: convert datao routineAn");

181

getcho;
exit(l);

if ((fmod((float)intcount, 11) =0) && (*data-type =p)

(/* Photo data */
store-buflstore-count] = volts;
store_count-H-;

if ((fmod((float)int...count,l 11) != 0) && (*datak type WD
/ * MIC data *

store_ buffstore_ count] =volts;

store...count++;

intcount++;
if ((store...count >= store-buf-size[0I) 11 (int~count>=max-it~count))

exiLroutine = TRUE;
break; /* Exit for loop *

if (exitroutine =- TRUE) break;
if (inLcount~read buf -size>maxjint.count)
teadjbufsize = max-int-count-inLcount;

while (exitjoutine == FALSE);
stop-t = start-t + (float)store-countifs;
close(file..handle); /* "file-handle" is a global varable used by *

/* geLfile-info to open files and leave open *
farfree(read..buf);
return(store...buf);

/* Round up-or-down routine *
unsigned long nd-off(float number)

double frac,intpart;
unsigned long rnd-.off..num;,

frac =-,nodf(number,&intpart);
if (frac >= .5) md-off~num = fll~or(number)+l; 1* Round up *
else rmd_off~num = floor(number); /* Round down *
return md off~num;

182

"Warp.c" Source Program

Time warping program.

Program: warp.c
Programmer: Patrick T. Marshall
Date: 11/19/91
Organization: WRDC/AAWP-2,

WPAFB, OH 45433
Phone: (513) 255-2471

- **** ****** ************* **** ** ******** ***** ***** *** ********************

#include <bios.h>
#include <time.h>
#include <conio.h>
#include <io.h>
#include 4cntl.h>
#include <sys\types.h>
#include <sys\stath>
#include <dos.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <dir.h>
#include <string.h>
#include "c:\borlandc\thesis\1ogical.h"
#include "c:\borlandc\thesis\warp.h"

The following is a Time-Warping routine. Implements DP time-
warping procedure to align two patterns, a & b. Returns
resultant min. cost & the warping function (here called "map").
Stages in DP process -_re samples of pattern "a" (the test pattern).
Reference:

Parsons, Thomas W., "Voice and Speech Processing," pages 297-303
and Appendix B, pages 379-382. New York: McGraw Hill Book Company,
1987.

Language:
Fortran-77 converted to Borland's Turbo C by Patrick T. Marshall,
Mar., 1991.

Variables:
'IP's:

183

/ . i : .. . ''" .* .
.-. ". - -." " . ,. •:

...-.... ;9i" : :Y - : , ."'

a: 1st pattern (test pattern along x-axis)
m: number of points in "a" (related to "i" no. of col.'s)
b: 2nd pattern (reference (template) pattern along y-axis)
n: number of points in "b" (related to "j" no. of rows)

O/P's:
tcost: cost of optimum path
map: encoded optimum path (size = m+n-1)
k: length of optimum path

Internal:
cost: 2-D array of recent accrued costs (n rows by 3 cols)
pred: 2-D array of predecessor points (n rows by m cols)
steps: I-D array of +/- integers for slope constraint. "+"

are for vertical steps and "-" are for horizontal
steps.

Constaints and Limitations:
1. Maximun tempate length is limited by size of cost & pred

arrays. This is currently set to 100 which should aliow
a maximum word length of 1.67 sec (1.67 sec = 100/60 Hz
for positive peaks only).

2. Accrued costs are retained for only two most recent rows of
points. At the end of a row, costs for row 2 (current row)
replace costs for row I (previous row) which are no longer
needed.

3. Paths & predecessor-point coordinates are encoded and decoded
into a single 16-bit unsigned integer by means of functions,
"epfunco & dpfunco" respectively.

4. The parallelogram method is used to define a "window.width path".
This is fine provided that "r., & n" are approximately equal.
If m = 2n or n = 2m, the pralleogram collapses into a straight
line (i.e., no warping is accomplished).

"exter int windowwidth,max-step;

unsigned *warp(float a[],unsigned cols,float b[],unsigned rows,float *tcost,
unsigned *k)

void setup_.plt(char[I,double,double,double,double,char[]);
/ void plot(float huge *,float.float,unsigned long,int);

void plot2(float huge*,float huge*,unsigned,int);
void print.plot(void);
void erase..plot(void);
void init..ploto;
float cfunc(float,float);
int epfunc(unsigned ,unsigned);

184

/V

void dpfunc(unsigncd,unsigned *,unsigned*)
unsigned nint(float);
float c,c l,c2,c3,slope,offset,huge *cost,IHUGE 1 .0637;
unsigned lrn 1 ,lim2,huge *map,huge *step-Cnt;
unsigned x=-O,y-=O,i~j,iijj;
unsigned long huge *pred,kk;
float buf..x[21,buf4y[21;
char file[3 I]="",pltpos[3] ,print-flag;

P* Allocate rows by cols.'s for pred[i]U] ~
if ((pred = farcalloc((rows+l)*(cols+l),sizeof(unsigned long))) ==NULL)

printf("ERROR(1): pred buffer allocation failed !\n");
printf("Location: warp() routine.\n");
printf("rows*cols = %d \n",cols*rows);
perror("");
getcho;
exit(l);

if ((step....nt = farcalloc(rows+l,sizeof(unsigned))) == NULL)

printf("ERROR(2): steps buffer allocation failedf\n");
printf("Location: warp() routine.\n");
perror("");
getcho;
exit(I);

) 1*~~ Allocate rows-i- rows by 2 cols.'s for cost[i]U] *
if ((cost = farcalloc((rows+l)*2,sizeof(float))) -- NULL)

printf(ERROR(4: cost buffer allocation failed !\n");
printf("Location: warp() routine.\n");
printf("rows*3 = %d \jn"3rows);
pefror("");
getcho;
exit(1);

init-pioto;
strcpy(&file[O],"c:\\borlandc\\thesis\\map.dat");
set~up..plt(file,cols, 175,rows, 175,"c");

slope =(float)(rows- 1)/(float)(cols- 1);
offset =(float)(rows - slope*cols);
for (i=l;ik=cols;i++) P* Loop through "a" ~

4 1*P Set max. allowable "Window Width" ~

185

lir I = max(1,nint(slope*i+offset-windowwidth));
lira2 = min(rows,nint(slope*i+offset+windowwidth));
for (j=lim 1 ;j<=lirm2;j++) /* Loop through "b" */
f

c = cfunc(a[i],bU]); P* Cost for this point *1
P* Cost for path to this point is ...*

if ((i = 1) && (j == 1)) /* No predecessors */
(

cost[l +j*2] =c;
pred[i+j*cols] = epfunc(1,1);

)
else P* Must consider 3 possible predecessors */
{

cI = HUGE;
if (pred[(i-1)+j*cols] > 0)

cI = cost[O+j*2] + c; /* Horizontal cost */
c2 = HUGE;
if (pred[(i-1)+(j-l)*coIs] > 0)

c2 = cost[0+(j- 1)*2] + c; P* Diagonal cost */
c3 = HUGE-
if (pred[i+(j-1)*cols] > 0)

c3 = cost[1+(j-1)*2] + c; P* Vertical cost */
if ((step..cnt[j] > 0) && (c2 < HUGE))
I
c3 = HUGE;
c3 =HUGE;
)
if (step..cntU] > 0) step.cntU]--;

/* Find cheapest cost */
if ((cI >= HUGE) && (c2 >= HUGE) && (c3 >= HUGE))
pred[i+j*cols] = 0;

else if ((c I <= c2) && (c I <= c3))
(
costf1+j*2] = (float)c1;
pred[(+j*cols] = epfunc(i- 1,j);

)
else if ((c2 <= c 1) && (c2 <= c3))
(
costfl+j*2] = (float)c2;
pred[i+j*cols] = epfunc(i- l,j- 1);

else if ((c3 <= c 1) && (c3 <= c2))
(
cost[i+j*2] = (float)c3;
pred[i+j*cols] = epfunc(ij- 1);

186

kk =pred[i4~j*cols];

if((kk != 0) && (i !=I) && (j!=I))

dpfunc(kk,&x,&y);
buf~x[0] = x;buf~y[0I = y
buf..x[I] = i;buf4y[I=j;*
plot2(buf..x,buf...y,2,2);

P* Check for continuous horizontal runs *

if((i>max_...step) && (step...cnta] = 0))
for(ii=i;iiAi-max...step;ii--)

kk = pred~ii+j*cols); P* Find predecessor *

iftkkýO) break;
dpfunc(kk,&x,&y);, P Decode kk *
if(y !=j) break;
if(x == i-max..step) step~sntUj] = max-..step;

I ~P Check for continuous vertical runs *

if((j>max...step) && (step-p.ntol == 0))
for(jj =j *jj>j-max...step,,jj-

kk = pred~i+jj*cols]l; P* Find predecessor *

if(kk==0O) break;
dpfunc(kk,&x,&y)J P* Decode kk *

if(x != i) break;
ifty ==j-max-.stepj step-cntUj+l] = nmax-..step;

) /*P End of "b" loop *
for (j=lm 1 j<=-lim2;,j++) P* Shift costs down *

cost(0+j*21 = cost[l+j*2];
I /*P End of "a" loop *

*tcost = cost[1 +rows*21; P* Note total cost *

printf("cost = %f\n",*tcost);
if (getch() =='pS) print~ploto;
erase..ploto;

farfree((void *)cost);
if ((map = faralloc(cols+rows,sizeof(unsigned))) =NULL)

printf("ERROR(5): map buffer allocation failed !n");

187

printf("Location: warp() routine.\n");
pefror("");
getcho;
exit(l);.

kk = epfunc(cols,rows); /* Work backward from final point *
for (ii=cols+rows- 1 ;ii>= I ;ii--)

map~ii] = kk;
dpfunc(kk,&i,&j); /* Decode kk *
if ((i = 1) && (j = 1)) break;
if ((i <= 0) 110 <= 0))

printf("ERROR(6): decode kk failed !\n");
printf("Location: warp() routineAn');
getchO);
exit(,1);

if ((i > cols) 11(j > rows))

printf("ERROR(7): decode kk failed !\n");
printf("Location: warp() routineAn");
getcho;
exit(l);

kk = pred[i+j*colsl; /* Find next predecessor *

*k= cols + rows - ii;ii--;
if (ii > 0) /* Shift map down to start of array *
for (i=l1;j<=*k;i.+.)

maplil = map[i + ii];
farfree((void *)step~cnt);
farfree((void *)pred);
return((void*)map);

/* Cost function used by warp()o
float cfunc(float x,float y)

float c;

C = pow(x-y,2);
return(c);

188

/* Path encoding function used by warp() */
int epfunc(unsigned i,unsigned j)
(
unsigned p=-O;

p = 256 * i +j;
return(p);

}

/* Path deco,4ing function used by warp() and others */
void dpfunc(unsigned kk,unsigned *i,unsigned *j)
(
•i = floor(kk!256);
•j = (unsigned)fmod(kk,256);
return;}

/* Nearest integer function used by warp()*/
unsigned nint (float x)
(
float p=O;
unsigned q;

p = floor(x)+0.5;
if(p<O) q = 0;
else if(p>=x) q = floor(x);
else q = ceil(x);
return(q);

************************************ **** ***************************

The following is a Linear Time-Warping routine. Implements time-
warping to align two patterns, a & b, with respect to their peaks.
Returns warped function (here called "warped.buf").

Variables:
I/P's:

a: Pattern to be warped
m: number of points in "a"
b: Reference pattern (template)
n: number of points in "b"

O/P's:
warped_buf: resultant warped a buffer

float *linearwarp(float af,unsigned m,float b[],unsigned n)

189

"Acq._dat.c" Source Program

Program contains aquisition speech functions used by main.

Program: aqcspc.c
Programmer: Patrick T. Marshall
Date: 2/25/91
Organization: WRDC/AAWP-2,

WPAFB, OH 45433
Phone: (513) 255-2471

Notes:

1. There are 12 isolated words numbered "0" through "1 1". In addition,
there are 7 continuous words numbered "12" through "18". If the external
char variable "opmode[0]" defined in acq_.,spc.h (originally from
data.acquisition0 routine in speech4.c) is equal to "i" then work
in the isolated mode. Otherwise assume continuous mode.

--- *1-
#p.agma check_stack(off)
#include <bios.h>
#include <time.h>
#include <conio.h>
#include <io.h>
#include dfcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <dos.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <dir.h>
#include <string.h>
#include "c:\borlandc\thesis\logical.h"
#include "c:\borlandc\thesis\acq.spc.h"

/* Function prototypes */
int alloct dmabuf(void); /* Allocate dma buffers */
void intr._setup(void); /* Set up interrupt operation */
void dmasetup(void); /* Set up dma operation */
void dma.finish(void); /* Called via atexit(mechanism */

192

void interrupt far dma-isr(void);
void start-dma(char for *,unsigned); P* Start a dma operation *
void initbrd(void); P* Initialize A/D board *
void on..brd(void); P* Turn A/D board on *
void acquire...data(void);
void waitjnessage (nt, mnt, char*, char*);
void message (nt, mnt, char*, char*);
void clearmessage (void);
void build...path (char*, char*, char*, int);
void restore..window(void);

void acquirej..ata()

unsigned i,offset,word_.scram_,3ffset;
unsigned long count,numjbytes=-O,byte..count=-O;

long mem;
int nexLcount,prev-count,start~count,run_..nt;
int starLword,stop....ord;
char filename[8 1];
struct dfree disk;
FILE *fileptr; P* File pointer for word file "word.lst" ~

numbytes = (unsigned long)(2.O*(25000+2500)*ts);
P* Load the word array & create files *1

if(op-.mode[O] == TI)

start-word = O;stop-..word = num...words;starLcount =1;

strcpy(filenaxne,"c:\\borlandc\\thesis~lisoword.Ist");

else

start-word = M2stop....ord = 12 + num._..words;start..count =13;

strcpy(fiiename,"c:\\borlandc\\thesis\\cotitword Ist");

if ((fileptr = fopen(filenanie,"r")) == NULL)

wait...message(O,7,"WARNING. fopen of word.lst rile faile!,
"Location: aquire-.data() routine in ACQ..SPC.C");

for (count=start_.yord;count<stop...word;count++)

fgets(word...buffer[count],40,fileptr);
build...path(complete....ilejiame,drive,path,count);
if ((filejiandle =open(completejfile...name,

193

Oý-WRONLYIQ.-CREATI'10jRUNCIO-BINARYIO-APP.END,S-JREADISjWMRI
TE))==1

message(O,15,"ERROR(l): raw data file open failed! \n",
"Location: aquire-.data() routine in ACQLSPC.C");

if (write(file...handle,&num-runs,si72zof(int)) == -1)
wait...message(O,7,"ERROR(2): write buffer failed!",

"Location: aquire...data() routine in ACQ..SPC.C");
if (wrie(filehandle,&nuimbytes,sizeof(unsign-ýd long)) -= -1)

waiLmessage(O,7,"ERROR(3): write buffer failed!"
"Location: aquire~data() routine in ACQSPC.CD);

close(file-handle),;

prevscount = 0;
if (fmod(numn...words,2) = 0) word~scram-offset = 1;
else word-scram-.offset = 0;
for (run...nt-O;run..cnt<num...runs;-unspnt++)

next~count = start~count- 1;
for (count=starLword;count<stop..yord;count++)

getdfree(0,&disk);,
niem=farcoreleftO;
niessage(0,7,"Hit any key!","");
getcho;restore...windowo;
build-path(completejfile..name,drive,path,nexLcount);
if ((file..handle = open(completefile...name,O...WRONLYIOBINARYIO_APPEND,

SIREADISJWRITE)) ==-1)

message(0, 1 5,"ERROR(4): rile open failed!",
"Location: aquire...data() routine in ACQ..SPC.C");

textcolor (LIGHTRED);
prev...count = next-count;
niessage(0, 10,word.j.uffer[next..countI, ")

if((*op_ mode ==Ti) 11 (*op mode = 'I))
/*I The following is for the isolated word scambler. *
next-count = next~count + starLcount;
if (next~count > num~words- 1)
nextcount = next~count - num...words - word_scram_offset;

if ((stlt.souzlt = num-words) && (nexLcount ==prev~count))

next..count =next-count - 1;

else

194

next-count++;
textcrlor (LIGHTGRAY);
init...brdO; /* Initialize A/D board *

/* Allocate buffers only once *
alloc..dma...bufo;
if ((run..cnt == 0) && (count -= start~word)) /* Only do this once ~
for (i=-O;iknumbuffers;i++) /* to insure will have exact *

num..~bytes += dma...buffers[iI.s; I* same window byte size/transfer *
bufjndex = 1;
if(numbuffers > 1)

dma~chan = 3;
dma-.setupo; /* Set chan 3 up for DMA operations ~
start_dma(dma buffers[l1.p,dma..buffers[1].s); /* Start up data acq *

intr...setupo; /* Set up DMA IRQ3 interrupt *
dma-chan = 1;
dma...setupo;, /* Set chan 1 up for DMA operations ~
start..dma(dma buffers[0I.p,dma..~buffers[0].s); /* Start up data acq *
on...brdo;
delay(200); /* Pause for 200 milliseconds *
while(TRUE)

if (irciflag)

buf~sount++;
if (irqjflag == 2) break;
irqflap = 0;

for (i=0;iknumbuffers-,i+*)

byte-count += (unsigned long) dma..buffers~i].s;
if (numbytes != num...bytes)

dmaj~.inisho;
wait~message(0,7,"ERROR(.i): byte window size changed between transfers",

"Location: aquire..data() routine in ACQ_..SPC.C");
retuirn;

I ~/* Throw out first 4 MIC bytes *
if (i ==0) offset = 4;
else offset = 0;
if (write(file _handle,dna~buffers[i] .p4-Offset~dma-jbuffers[i].s-offset) =-1)

dma~finish9;)-

195

wait..mcssage(O,7,"ERROR(6): write buffer failed!",
"Location: aquire-.data() routine in AC(LSPC.C");
return;

numbytes = (unsigned long) (2.O0*(25000+2500) *ts);
byte-count = O;irqjflag = 0;
dma..finisho;
restore-.windowO;
close~ffle...handle);
) I End of inner loop *

start~count++;
if (start~count > num~words) /* Have to reset counter*,

if((*op -mode 11i' I (*op-mode ==T)) start~count = 1;
else start-count = 13;

I/* End of outer loop *
/* Since "alloca~dma_bufO" modifies numbytes, have to rewrite- data at ~
/* beginning of file. */
num...bytes -=4; /* Throw out first 4 MIC bytes *
for (count=starLword;count<stop...word;count++)

buld..paith(completejfilejriame,drive,path,count);
if ((file_..handle = open(completejfile...name,O WRONLYIQ..BINARY,

SJREADISJWRJTE)) = -1)

message(0, 15,"ERROR(7): file open failed! \n",
"Location: aquire..data() routine in AC(LSPC.C");
exit(O);

if (write(file~handle,&num runs,sizeof(int)) = 1)
wait...message(0,7, "ERR OR(8): write buffer failed! ",

"Location: aquire...data() routine in ACQSPC.C");
if (write(file...handle,&num_bytes.sizeof(unsigned long)) =- -1)

wait~message(0,7,"ERROR(9): write buffer failed!",
"Location: aquire...data() routine in ACQ..SPC.C");

close(file. -handle);

fcose(fileptr);
return;

196

Bibliography

1. Petajan, Eric D. "Automadc Lipreading to Enhance Speech Recognition," IEEE Global
Telecommunications Conference. 265-272. New York: IEEE Press, November 1984.

2. Alex Pentland and Kenji Mase "LUp reading: Automatic Visual Recognition of Spoken
Words," M.I.T. Media Lab Vision Science Technical Report 117:1-9 (January 1989).

3. Kabrisky, Matthew. Thesis advisory meetings and telephone conversations. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, June
1990 - August 1992.

4. Pyroelectric Infrared Sensor IRA Series. Product Catalog SOlE-5. muRata Erie North
America, Smyrna, GA, 1988.

5. Amperex Electronic Corporation Technical P'blication 163, Slatersville Division,
Smithfield, RI, undated.

6. Silicon Photodiodes Optoelectronics Data Book. EG&G Vactec Optoelectronics, St.

Louis MO, 1990.

7. Photosensor Product Catalog. Advanced Optoelectronics, City of Industry CA, 1989.

8. Saito, Shuzo and Nakata, Kazuo. Fundamentals of Speech Signal Processing, Academic
Press, 1985.

9. General Purpose Detectors Technical Data Sheet. Silicon Detector Corporation,
Camarillo CA, undated.

10. Parsons, Thomas W. Voice and Speech Processing. McGraw-Hill Series in Electrical
Engineering, 1987.

11. Bevington, Philip R. Data Reduction and E:'ror Analysis for the Physical Sciences,
McGraw-Hill Book Company, 1969.

12. Rabiner, L. R. and Schafer, R.W. Digital Processing of Speech Signal, Prentice-Hall,
1978.

13. Eggebrecht, Lewis C. Interfacing to the IBM Personal Computer, Howard W. Sams
and Company, 1990.

14. MAX 167ACNG A/D Specifications Sheet. MAXIM, Sunnyvale CA, 1990.

197

15. Nolan, Tom. "Real-Time Data Acquisition Using DMA," Dr. ,Dobb's journal, pages
28-37,94-96 (January 1990).

198

* form Approved

REPORT DOCUMENTATION PAGE om Aoved

I~ LME Aj2o 0,04-0788

Va.'s - S. tf 12# 4 Ad ,qton. VA 22021A302 a.d tO tP. Off t of Ma".o' m t AM IUO3el PD e t , I0% O r PeCj l ct Pr o Z 4.088t (0704-0_88; .0503

Spec RAENcognitionY Using b'nk vIse 9 I F'a u 0Jn"UBR1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
S Spp 92 Final Jun 90 - Jan 93

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Speech Recognition Using Visible and Infrared Detectors

6. AUTHOR(S)

Patrick T. Marshall

7. PEIFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

AFIT/ENG, BLdg 640 REPORT NUMBER

2950 2 St. 4PT./GE/LI&/9"&'1 .
WPABB, OH 45433-7765

9. SPONSORING:'MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

I124. DISTRIBUTION, AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release: Distribution Unlimited

13. ABSTRACT (Mommum 200 words)

A system has been developed that tracks lip motion using infrared (IR) or visible detectors. The
purpose of this study was to determine if the additional information obtained from the LR or,
visible detectors can be used to increase the recognition rate of audio Automatic Speech
Recognition (ASR) systems. To accomplish this goal, several hardware analog prototypes had to
be designed, built and tested. Different detectors (IR and visible) and modes of operation (active
and passive) were tried before a reliable and useful signal was found. An analog-to-digital (A/D)
board was then designed and built that digitized both the microphone and photo signals.
Software algorithms, executed from a desktop PC, were used to interface with the A/D board,
process the digitized data, and perform certain optical and audio ASR experiments. The results
showed that isolated ASR audio recognition rates increased after using additional information
gained from the photo speech signals. However, the results for the continuous case were
inconclusive since not all of the available photo information was utilized to perform ASR
experiments.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Speech recognition, IR, Visible, Detectors, Audio, DTW, 207
Photo, Sensors, ASR, A/D 16. PRICE CODE

17. SECURITY CLASSIFICATION 1l. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTJ
OF REPORT j OF THIS PAGE OF ABSTRACT 0

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED , UL
NSN 7540-01-280-5500 Stancard Form 298 (Rev 2-89)

P>2critQ bv AN%, Std Z29-18

/ \.2

i !, " X

DATE:4

4/

